Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Antibacterial Matte Glass-Ceramic Coatings with Satin Texture for Ceramic Tiles

Oksana Savvova1, Yana Pokroieva2, Hennadii Voronov1, Olena Babich3, Yuliia Smyrnova1
Affiliation: 
1 O.M. Beketov National University of Urban Economy in Kharkiv, Kharkiv, Ukraine (O. M. Beketov NUUE), 17 Marshal Bazhanov St., Kharkiv 61002, Ukraine 2 PJSC “Kharkiv Tile Plant”, 297 Heroiv Kharkova Ave., Kharkiv 61106, Ukraine 3 Scientific Research Institution “Ukrainian Scientific Research Institute of Ecological Problems” 6 Bakulina St., Kharkiv 61166, Ukraine savvova_oksana@ukr.net
DOI: 
https://doi.org/10.23939/chcht17.03.655
AttachmentSize
PDF icon full_text.pdf491.77 KB
Abstract: 
Antibacterial satin glass-ceramic coatings for ceramic tiles have been developed by one-stage firing on the basis of high-calcium zinc aluminum silicate frits, which are modified with heavy metal cations. The antibacterial effect of the developed matte glass-ceramic coatings with a satin texture was established due to the effect of potentiating the antibacterial activity of the combined action of the hardystonite crystalline phase and fillers of zinc and tin oxides.
References: 

[1] Ceramic Tiles Market by Type (Porcelain, Glazed, Unglazed), Application (Floor, Internal Wall, External Wall, Others), End-Use Sector (Residential & Non-residential), & Region - Global Forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/ceramic-tiles-market-22... (accessed 2022-11-08).

[2] Vitenu-Sackey, P.A.; Barfi, R. The Impact of Covid-19 Pandemic on the Global Economy: Emphasis on Poverty Alleviation and Economic Growth. The Economics and Finance Letters 2021, 8, 32-43. https://doi.org/10.18488/journal.29.2021.81.32.43
https://doi.org/10.18488/journal.29.2021.81.32.43

[3] Indian Council of Ceramic Tiles and Sanitary Ware. http://www.icctas.com/pdf/magazine_2021.pdf

(accessed 2022-11-08)

[4] Antimicrobial Materials for Biomedical Applications. Series 5; Domb, A.J.; Kunduru, K.R.; Farah, S., Eds.; London: Royal Society of Chemistry, 2019.

[5]. Luo, H.; Yin, X.-Q.; Tan, P.-F.; Gu, Z.-P.; Liu, Z.-M.; Tan, L. Polymeric Antibacterial Materials: Design, Platforms and Applica-tions, J. Mater. Chem. B 2021, 9, 2802-2815. https://doi.org/10.1039/D1TB00109D
https://doi.org/10.1039/D1TB00109D

[6] Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S; Qin, G. Antibac-terial Metals and Alloys for Potential Biomedical Implants. Bioact. Mater. 2021, 6, 2569-2612. https://doi.org/10.1016/j.bioactmat.2021.01.030
https://doi.org/10.1016/j.bioactmat.2021.01.030

[7] Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.D.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial Approaches in Tissue Engineering Using Metal Ions and Nanoparticles: From Mechanisms to Applications. Bioact. Mater. 2021, 6, 4470-4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
https://doi.org/10.1016/j.bioactmat.2021.04.033

[8] Ceramic Products Market in Japan. Tableware, Wall & Floor Tiles, Bio-ceramics. Challenges and Opportunities for European Companies. https://www.eu-japan.eu/sites/default/files/ publica-tions/docs/ceramicproductsmarket_spupapaza_min15-2.pdf (accessed 2022-11-09).

[9] Development of Sol-gel Antibacterial and Antiviral Coating for Glass NEWS RELEASE. https://www.nsg.com/-/media/nsgcom/downloads/en/2021/17mar2021sol-gelcoa... (accessed 2022-11-09).

[10] Savvova, O.V. Biocide Apatite Glass-Ceramic Materials for Bone Endoprosthetics. Chem. Chem. Technol. 2013, 7, 109-112. https://doi.org/10.23939/chcht07.01.109
https://doi.org/10.23939/chcht07.01.109

[11] Savvova, O.V.; Bragina, L.L. Use of Titanium Dioxide for the Development of Antibacterial Glass Enamel Coatings. Glass Ce-ram. 2010, 67, 184-186. https://doi.org/10.1007/s10717-010-9258-8
https://doi.org/10.1007/s10717-010-9258-8

[12] Karasu, B.; Yüksel, G.; Uysal, N. The Recent Developments in Ceramic Glazes. Seramik [Online], 2020, 58, 116-128.

https://www.researchgate.net/publication/344172770_The_Recent_Developmen...

(accessed 2022-11-16).

[13] Noguera, J.F.; Moreno, A.; Gozalbo, A.; Orts, M.J. Develop-ment of Ceramic Glaze Compositions with Bactericidal and Fungi-cidal Properties. Qualicer'10 Castellon (Spain) [Online] 2010. https://www.qualicer.org/recopilatorio/ponencias/pdfs/2010189.pdf (accessed 2022-11-16).

[14] Özcan, S.; Çaliş Açikbaş, N.; Açikbaş, G. Formation of anti-bacterial effect on ceramic tile surfaces. Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering [Online] 2017, 18, 122-130. https://doi.org/10.18038/aubtda.300424
https://doi.org/10.18038/aubtda.300424

[15] Hrubec, T.C.; Melin, V.E.; Shea, C.S.; Ferguson, E.E.; Garofola, C.; Repine, C.M.; Chapman, T.W.; Patel, H.R.; Razvi, R.M.; Sugrue, J.E. et al. Ambient and Dosed Exposure to Quaternary Ammonium Disinfectants Causes Neural Tube Defects in Rodents. Birth Defects Research [Online] 2017, 109, 1166-1178. https://doi.org/10.1002/bdr2.1064 (accessed 2022-11-16).
https://doi.org/10.1002/bdr2.1064

[16] Maryani, E, Nurjanah, N. S, Hadisantoso, E.P.; Wijayanti, R.B. The Effect of TiO2 Additives on the Antibacterial Properties (Escherichia coli and Staphylococcus aureus) of Glaze on Ceramic Tiles. IOP Conference Series: Materials Science and Engineering 2020, 980, 012011. https://doi.org/10.1088/1757-899X/980/1/012011
https://doi.org/10.1088/1757-899X/980/1/012011

[17] Hasmaliza, M.; Foo, H.S.; Mohd, K. Anatase as Antibacterial Material in Ceramic Tiles. Procedia Chem. 2016, 19, 828-834. https://doi.org/10.1016/j.proche.2016.03.109
https://doi.org/10.1016/j.proche.2016.03.109

[18] Campbell, A.L. Ceramic glaze having antimicrobal property. US20090104459A1, 23 April 2009.

[19] Kumar, G.D.; Mishra, A; Dunn, L.; Townsend, A.; Oguadinma, I.C.; Bright, K.R.; Gerba, C.P. Biocides and Novel Antimicrobial Agents for the Mitigation of Coronaviruses. Front. Microbiol. 2020, 11, А.1351. https://doi.org/10.3389/fmicb.2020.01351
https://doi.org/10.3389/fmicb.2020.01351

[20] Savvova, O.V.; Bragina, L. L.; Babich, E.V. Study of the Biocidal Properties of R2O-RO-TiO2-P2O5-R2O3-SiO2 Glass Ceramic Coatings. Glass Ceram. 2012, 69, 20-24. https://doi.org/10.1007/s10717-012-9407-3
https://doi.org/10.1007/s10717-012-9407-3

[21] Reinosa, J.J.; Rojo, M.M.; del Campo, A.; Martín-González, M.; Fernández J.F. Highly Efficient Antimicrobial Ceramics Based on Electrically Charged Interfaces. ACS Appl. Mater. Interfaces 2019, 11, 39254-39262. https://doi.org/10.1021/acsami.9b10690
https://doi.org/10.1021/acsami.9b10690

[22] Mäkelä, J.; Aromaa, M. UNCOAT - Enhanced Functionality of Selfcleaning and Antibacterial Surface Coatings. [Online] 2009, 06120. http://www.diva-portal.se/smash/get/diva2:707171/ FULLTEXT01.pdf (accessed 2022-11-18)

[23] Tapkire, G.V. Influence of Antimicrobial & Super Hydrophobic on Flooring Tiles. Int. res. j. eng. tech. 2018, 05, 1453-1456.

[24] da Silva, A.L.; Dondi, M.; Hotza, D. Self-Cleaning Ceramic Tiles Coated with Nb2O5 Doped-TiO 2 Nanoparticles. Ceram. Int. 2017, 43, 11986-11991. https://doi.org/10.1016/j.ceramint.2017.06.049
https://doi.org/10.1016/j.ceramint.2017.06.049

[25] Khorshidi, Z.G.; Jallab, M.; Moghbelli E.; Goudarzi, A.; Ghaf-fari, M. Photocatalytic Analysis of a Hydrophilic Acrylic Coating/ Zinc Oxide Nanocomposite on Glass Substrate. POLYM-PLAST TECH MAT 2021, 60, 1220-1232. https://doi.org/10.1080/25740881.2021.1888986
https://doi.org/10.1080/25740881.2021.1888986

[26] Savvova, O.V.; Shevetovsky, V.V.; Pokroeva, Ya.O.; Zinchenko, I.V.; Babich, O.V.; Voronov, H.K. Development of Antibacterial Glazing for Ceramic Tiles. Voprosy khimii i khimicheskoi tekhnologii 2022, 3, 60-66. https://doi.org/10.32434/0321-4095-2022-142-3-60-66
https://doi.org/10.32434/0321-4095-2022-142-3-60-66

[27] Kapoor, A.; Viraraghavan, T. Heavy Metal Biosorption Sites in Aspergillus niger. Bioresour. Technol. 1997, 61, 221-227. https://doi.org/10.1016/S0960-8524(97)00055-2
https://doi.org/10.1016/S0960-8524(97)00055-2