Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Advanced Research on the Production, Transportation and Processing of High Waxy Oil. A Review

Petro Topilnytskyy1, Oleh Shyshchak1, Valentyna Tkachuk2, Liubov Palianytsia1, Olesya Chupashko3
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandery St., 79013 Lviv, Ukraine 2 Lutsk National Technical University, 75, Lvivska St., 43018 Lutsk, Ukraine 3 Danylo Halytsky Lviv National Medical University, 69, Pekarska St., 79010 Lviv, Ukraine topoil@lp.edu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.258
AttachmentSize
PDF icon full_text.pdf502.16 KB
Abstract: 
Global demand for crude oil has grown significantly over the past two decades. However, conventional light crude oil production is declining, and more and more deposits of heavy and waxy oil, including high waxy ones, are being developed, creating new technological challenges at every level of the process, from production to transportation and refining. Among the various problems, the main one is wax deposition. Since the costs of maintenance, repair, and achieving the required low-temperature properties of commercial oil products are very high, solving this problem becomes critical. The paper discusses the existing problems of production, transportation, and refining of waxy crude oil and analyzes the methods of their solution.
References: 

[1] Yarmola, T; Topilnytskyy, P.; Romanchuk, V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17, 195-202. https://doi.org/10.23939/chcht17.01.195
https://doi.org/10.23939/chcht17.01.195

[2] Yarmola, T.V.; Topilnytskyy, P.I.; Skorokhoda V.J.; Korchak, B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 2023(1), 40-49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
https://doi.org/10.32434/0321-4095-2023-146-1-40-49

[3] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem Chem Technol. 2022; 16, 461-468. https://doi.org/10.23939/chcht16.03.461
https://doi.org/10.23939/chcht16.03.461

[4] Chen, X.; Hou, L.; Wei, X.; Bedrov, D. Transport Properties of Waxy Crude Oil: A Molecular Dynamics Simulation Study. CS Omega 2020, 5, 18557-18564. https://doi.org/10.1021/acsomega.0c00070
https://doi.org/10.1021/acsomega.0c00070

[5] Rehan, M.; Nizami A.-S.; Taylan, O.; Al-Sasi B.O. et al. Determination of Wax Content in Crude Oil. Pet. Sci. Technol. 2016, 34, 799-804. https://doi.org/10.1080/10916466.2016.1169287
https://doi.org/10.1080/10916466.2016.1169287

[6] Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow Start-Up and Transportation of Waxy Crude Oil in Pipelines-A Review. J. Non-Newton. Fluid Mech., 2018, 251, 69-87. https://doi.org/10.1016/j.jnnfm.2017.11.008
https://doi.org/10.1016/j.jnnfm.2017.11.008

[7] Vinay, G.; Bhaskoro, P.T.; Hénaut, I.; Sariman, M.Z.; Anuar, A.; Shafian, S.R.M. A Methodology to Investigate Factors Governing the Restart Pressure of a Malaysian Waxy Crude Oil Pipeline. J. Pet. Sci. Eng. Part E, 2022, 208, 109785. https://doi.org/10.1016/j.petrol.2021.109785
https://doi.org/10.1016/j.petrol.2021.109785

[8] López, D.; Ríos, A.A.; Marín, J.D.; Zabala, R.D.; Rincon, J.A.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. SiO2-Based Nanofluids for the Inhibition of Wax Precipitation in Production Pipelines. ACS Omega 2023, 8(37), 33289-33298. https://doi.org/10.1021/acsomega.3c00802. PMID: 37744863; PMCID: PMC10515383
https://doi.org/10.1021/acsomega.3c00802

[9] Hao, L.Z.; Al-Salim, H.S.; Ridzuan, N. A Review of the Mechanism and Role of Wax Inhibitors. Pertanika J. Sci. Technol. 2019, 27(1), 499-526.

[10] Sousa, A.M.; Ribeiro, T.P.; Pereira, M.J.; Matos H.A. Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies 2023, 16(1), 120. https://doi.org/10.3390/en16010120
https://doi.org/10.3390/en16010120

[11] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. http://hdl.handle.net/10454/17283
https://doi.org/10.1016/j.ces.2019.115212

[12] Waxy Crude Oil Market Report 2022. https://www.businessresearchinsights.com/market-reports/waxy-crude-oil-m...

[13] Biletskyy, V. (Ed.). Mala Hirnycha Encyclopedia, vol. 2; Donbas, 2007.

[14] Mykhailov, V.A.; Karpenko, O.M.; Kurylo, M.M. et al. Horiuchi Korysni Kopalyny Ukrainy ta Yikhnia Heoloho-Ekonomichna Otsinka; Kyivskyi Universytet, 2018.

[15] de Oliveira, M.; Vieira, L.; Miranda, L.; Miranda, D.; Marques, L.C.C. On the Influence of Micro- and Macro-Cristalline Waxs on the Physical and Rheological Properties of Crude Oil and Organic Solvents. Chem.Сhem. Technol. 2016, 10, 451-458. https://doi.org/10.23939/chcht10.04.451
https://doi.org/10.23939/chcht10.04.451

[16] Serediuk, V.D. Laboratorni Doslidzhennia z Vykorystannia Reahentu Tvin 80 dlia Zapobihannia i Zmenshennia Asfaltenosmoloparafinovykh Vidkladiv u Naftovykh Sverdlovynakh. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch 2008, 2, 43-47.

[17] Ragunathan, T.; Husin, H.; Wood, C.D. Wax Formation Mechanisms, Wax Chemical Inhibitors and Factors Affecting Chemical Inhibition. Appl. Sci. 2020, 10, 479. https://doi.org/10.3390/app10020479
https://doi.org/10.3390/app10020479

[18] Olajire, A.A. Review of Wax Deposition in Subsea Oil Pipeline Systems and Mitigation Technologies in the Petroleum Industry. Chem. Eng. J. Adv. 2021, 6, 100104. https://doi.org/10.1016/j.ceja.2021.100104
https://doi.org/10.1016/j.ceja.2021.100104

[19] Pedersen, K. S.; Rønningsen, H. P. Influence of Wax Inhibitors on Wax Appearance Temperature, Pour Point, and Viscosity of Waxy Crude Oils. Energy Fuels 2003, 17, 321- 328, https://doi.org/10.1021/ef020142+
https://doi.org/10.1021/ef020142

[20] Kök, M.V.; Varfolomeev, M.A.; Nurgaliev, D.K. Wax Appearance Temperature (WAT) Determinations of Different Origin Crude Oils by Differential Scanning Calorimetry. J. Pet. Sci. Eng. 2018, 168, 542-545. https://doi.org/10.1016/j.petrol.2018.05.045
https://doi.org/10.1016/j.petrol.2018.05.045

[21] Behbahani, T.J.; Beigi, A.A.M.; Taheri, Z.; Ghanbari, B. Investigation of Wax Precipitation in Crude Oil: Experimental and Modeling. Petroleum 2015, 1, 223-230. https://doi.org/10.1016/j.petlm.2015.07.007
https://doi.org/10.1016/j.petlm.2015.07.007

[22] Mansoori, A. Wax/Wax and Waxy Crude Oil: The Role of Temperature on Heavy Organics Deposition from Petroleum Fluids, 2009. [Online]. https://mansoori.people.uic.edu/Wax.and.Waxy.Crude_html (accessed 2023-11-21).

[23] Makwashi, N.; Zhao, D.; Abdulkadir, M.; Ahmed, T.; Muhammad, I. Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment. J.Pet. Sci. Eng. 2021, 204, 108734. https://doi.org/10.1016/j.petrol.2021.108734
https://doi.org/10.1016/j.petrol.2021.108734

[24] Lira-Galeana, C.; Hammami, A. Wax Precipitation from Petroleum Fluids: A Review. In The, F.Y.; Chilingarian, G.V. (Eds.), Developments in Petroleum Science; Elsevier 2000, pp. 557-608. https://doi.org/10.1016/S0376-7361(09)70292-4
https://doi.org/10.1016/S0376-7361(09)70292-4

[25] Pu, H.; Ai, M.; Miao, Q.; Yan, F. (2014). The Structural Characteristics of Low-Temperature Waxy Crude. Pet. Sci. Technol. 2014, 32, 646-653. https://doi.org/10.1080/10916466.2013.862267
https://doi.org/10.1080/10916466.2013.862267

[26] Misra, S.; Baruah, S.; Singh, K. Wax Problems in Crude Oil Production and Transportation: A Review. SPE Prod. Facil. 1995, 10, 50-54. https://doi.org/10.2118/28181-PA
https://doi.org/10.2118/28181-PA

[27] Garcia, M.; Urbina, A. Effect of Crude Oil Composition and Blending on Flowing Properties. Pet. Sci. Technol. 2003, 21, 863-878. https://doi.org/10.1081/LFT-120017454
https://doi.org/10.1081/LFT-120017454

[28] Тarantino, G.B.; Vieira, L.C.; Pinheiro, S.B.; Mattedi, S.; Santos, L.C.L.; Pires, C.A.M.; Góis, L.M.N.; Santos, P.C.S. Characterization and Evaluation of Waxy Crude Oil Flow. Braz. J. Chem. Eng. 2016, 33, 1063- 1071. https://doi.org/10.1590/0104-6632.20160334s20150103
https://doi.org/10.1590/0104-6632.20160334s20150103

[29] Olayiwola, S.O.; Dejam, M. Interfacial Energy for Solutions of Nanoparticles, Surfactants, and Electrolytes. AIChE J. 2020, 66, e1689. https://doi.org/10.1002/aic.16891
https://doi.org/10.1002/aic.16891

[30] Olayiwola, S.O.; Dejam, M. Experimental Study on the Viscosity Behavior of Silica Nanofluids With Different Ions of Electrolytes. Ind. Eng. Chem. Res. 2020, 59, 3575-3583. https://doi.org/10.1021/acs.iecr.9b06275
https://doi.org/10.1021/acs.iecr.9b06275

[31] Liu, J.; Zhao, Y. P.; Ren, S. L. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels 2015, 29, 1233- 1242, https://doi.org/10.1021/ef5019737
https://doi.org/10.1021/ef5019737

[32] Yang, J.; Lu, Y., Daraboina, N.; Sarica, C. Wax Deposition Mechanisms: Is the Current Description Sufficient? Fuel 2020, 275, 17937. https://doi.org/10.1016/j.fuel.2020.117937
https://doi.org/10.1016/j.fuel.2020.117937

[33] Melnyk, A.P..; Kryvulia, S.V.; Malik, S.G.; Dehtiarov, D.O. Doslidzhennia Vplyvu Reahentiv na Znyzhennia Temperatury Zastyhannia Nafty. Naftohazova Haluz Ukrainy 2015, 6, 18-21.

[34] Gabayan, R.C.M.; Sulaimon, A.A.; Jufar, S.R. Application of Bio-Derived Alternatives for the Assured Flow of Waxy Crude Oil: A Review. Energies 2023, 16(9), 3652. https://doi.org/10.3390/en16093652
https://doi.org/10.3390/en16093652

[35] Kiyingi, W.; Guo, J.; Xiong, R.; Su, L.; Yang, X.; Zhang, S. (2022). Crude Oil Wax: A Review on Formation, Experimentation, Prediction, and Remediation Techniques. Pet. Sci. 2022, 19, 2343-2357. https://doi.org/10.1016/j.petsci.2022.08.008
https://doi.org/10.1016/j.petsci.2022.08.008

[36] El-Dalatony, M.M.; Jeon, B-H.; Salama, E-S.; Eraky, M.; Kim, W.B.; Wang, J.; Ahn, T. Occurrence and Characterization of Wax Wax Formed in Developing Wells and Pipelines. Energies 2019, 12(6), 967. https://doi.org/10.3390/en12060967
https://doi.org/10.3390/en12060967

[37] Thota, S.T.; Onyeanuna, C.C. Mitigation of Wax in Oil Pipelines. Int. j. Eng. Res. Rev. 2016, 4, 39-47.

[38] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Al-Shehri, D.; Al-Nakhli, A. R.; Bataweel, M. A. Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals. Sustainability 2019, 11, 2838. https://doi.org/10.3390/su11102838
https://doi.org/10.3390/su11102838

[39] Mahmoud, M. Well Clean-Up Using a Combined Thermochemical/Chelating Agent Fluid. J. Energy Resour. Technol. 2019, 141, 102905. https://doi.org/10.1115/1.4043612
https://doi.org/10.1115/1.4043612

[40] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Elkatatny, S.; Al-Nakhli, A. R.; Bataweel, M. A. Novel Technique to Eliminate Gas Condensation in Gas Condensate Reservoirs Using Thermochemical Fluids. Energy Fuels 2018, 32, 12843-12850. https://doi.org/10.1021/acs.energyfuels.8b03604
https://doi.org/10.1021/acs.energyfuels.8b03604

[41] Sousa, A.L.; Matos, H.A.; Guerreiro, L.P. Preventing and Removing Wax Deposition Inside Vertical Wells: A Review. J. Pet. Explor. Prod. Technol. 2019, 9, 2091-2107. https://doi.org/10.1007/s13202-019-0609-x
https://doi.org/10.1007/s13202-019-0609-x

[42] Golczynski, T.S.; Kempton, E.C. Understanding Wax Problems Leads to Deepwater Flow Assurance Solutions. World Oil 2006, 227, 7-10.

[43] Jovanović, S.; Tolmač, J.; Prvulovic, S.; Marković, M.; Lalović, B.; Tolmač, D. (2021). Analiza Obrade Visokoparafinskih Nafti Dodatkom Modifikatora Reoloških Osobina. Zbornik Međunarodnog Kongresa O Procesnoj Industriji - Procesing [S.l.] 2021, 34, 113-118. https://doi.org/10.24094//ptk.021.34.1.113
https://doi.org/10.24094//ptk.021.34.1.113

[44] Maneeintr, K.; Ruengnam, T.; Taweeaphiradeemanee, T.; Tuntitanakij, T. Wax Inhibitor Performance Comparison for Waxy Crude Oil from Fang Oilfield. E3S Web of Conferences, 2021, 294, 06005. https://doi.org/10.1051/e3sconf/202129406005
https://doi.org/10.1051/e3sconf/202129406005

[45] Liu, T.; Fang, L.; Liu, X.; Zhang, X. Preparation of a Kind of Reactive Pour Point Depressant and its Action Mechanism. Fuel 2015, 143, 448-454, https://doi.org/10.1016/j.fuel.2014.11.094
https://doi.org/10.1016/j.fuel.2014.11.094

[46] Wijayanto, T.; Kurihara, M.; Kurniawan, T.; Muraza, O. Experimental Investigation of Aluminosilicate Nanoparticles for Enhanced Recovery of Waxy Crude Oil. Energy Fuels 2019, 33, 6076-6082. https://doi.org/10.1021/acs.energyfuels.9b00781
https://doi.org/10.1021/acs.energyfuels.9b00781

[47] Liu, Y.; Jing, G.; Sun, Z. et al. A Mini-Review of Nanocomposite Pour Point Depressants. Pet. Chem. 2023, https://doi.org/10.1134/S0965544123050031
https://doi.org/10.1134/S0965544123050031

[48] Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, Q.; Gong, J. The Influence of Nanocomposite Pour Point Depressant on the Crystallization of Waxy Oil. Fuel 2018, 221, 257-268. https://doi.org/10.1016/j.fuel.2018.01.040
https://doi.org/10.1016/j.fuel.2018.01.040

[49] Nalyvaiko, O.I.; Vynnykov, Yu.L.; Nalyvaiko, L.G.; Petrash, R.V.; Ichanska, N.V.; Chyhyriov V.V. Tekhnolohiia Vplyvu Mahnitnoho Polia na Vysokoparafinystu Naftu u Truboprovodakh Riznoho Diametru. Academic Journal Industrial Machine Building, Civil Engineering 2018, 1, 208-213. https://doi.org/10.26906/znp.2018.50.1077
https://doi.org/10.26906/znp.2018.50.1077

[50] Alnaimat, F.; Ziauddin, M.; Mathew, B. Wax Deposition in Crude Oil Transport Lines and Wax Estimation Methods. In Yi, Y. (Cindy) (Ed.) Intelligent System and Computing. IntechOpen 2020. https://doi.org/10.5772/intechopen.89459
https://doi.org/10.5772/intechopen.89459

[51] Oh, K.; Jemmett, M.; Deo, M. Yield Behavior of Gelled Waxy Oil: Effect of Stress Application in Creep Ranges. Ind. Eng. Chem. Res. 2009, 48 (19), 8950-8953. https://doi.org/10.1021/ie9000597
https://doi.org/10.1021/ie9000597

[52] Bai, C.; Zhang, J. Effect of Carbon Number Distribution of Wax on the Yield Stress of Waxy Oil Gels. Ind. Eng. Chem. Res. 2013, 52 (7), 2732-2739. https://doi.org/10.1021/ie303371c
https://doi.org/10.1021/ie303371c

[53] Topilnytskyy, P.; Romanchuk, V., Yarmola, T; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412-419. https://doi.org/10.23939/chcht14.03.412
https://doi.org/10.23939/chcht14.03.412

[54] Janamatti, A.; Lu, Y.; Ravichandran, S.; Sarica, C.; Daraboina, N. Influence of Operating Temperatures on Long-Duration Wax Deposition in Flow Lines. J. Pet. Sci. Eng. 2019, 183, 106373, https://doi.org/10.1016/j.petrol.2019.106373
https://doi.org/10.1016/j.petrol.2019.106373

[55] Mohyaldinn, M.E.; Husin, H.; Hasan, N.; Elmubarak, M.M.B.; Genefid, A.M.E.; Dheeb, M.E.A. (2019). Challenges during Operation and Shutdown of Waxy Crude Pipelines. In Gounder, R.M. (Ed.), Processing of Heavy Crude Oils - Challenges and Opportunities. IntechOpen 2019. https://doi.org/10.5772/intechopen.89489
https://doi.org/10.5772/intechopen.89489

[56] Theyab, M.A. Wax Deposition Process: Mechanisms, Affecting Factors and Mitigation Methods. Open Access J. Sci. 2018, 2, 112-118. https://doi.org/10.15406/oajs.2018.02.00054
https://doi.org/10.15406/oajs.2018.02.00054

[57] Pylypiv, L.D. Osoblyvosti Budovy Tverdykh Vuhlevodniv ta yikh Vplyv na Rukh Nafty Truboprovodamy. Naftohazova Enerhetyka 2013, 1, 60-67.

[58] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. https://doi.org/10.1016/j.ces.2019.115212
https://doi.org/10.1016/j.ces.2019.115212

[59] Elkatory, M.R.; Soliman, E.A.; El Nemr, A.; Hassaan, M.A.; Ragab, S.; El-Nemr, M.A.; Pantaleo, A. Mitigation and Remediation Technologies of Waxy Crude Oils' Deposition within Transportation Pipelines: A Review. Polymers (Basel) 2022, 14, 3231. https://doi.org/10.3390/polym14163231
https://doi.org/10.3390/polym14163231

[60] White, M.; Pierce, K.; Acharya, T. A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry. SPE Prod. Oper. 2017, 33, 1-10. https://doi.org/10.2118/189447-PA
https://doi.org/10.2118/189447-PA

[61] Li, Y.F.; Tsai, T.H.; Yang, T.H. A Novel Strengthening Method for Damaged Pipeline Under High Temperature Using Inorganic Insulation Material and Carbon Fiber Reinforced Plastic Composite Material. Materials 2019, 12, 3484. https://doi.org/10.3390/ma12213484
https://doi.org/10.3390/ma12213484

[62] Alade, O.S.; Hassan, A.; Mahmoud, M.; Al-Shehri, D.; Al-Majed, A. Novel Approach for Improving the Flow of Waxy Crude Oil Using Thermochemical Fluids: Experimental and Simulation Study. ACS Omega 2020, 5, 4313-4321. https://doi.org/10.1021/acsomega.9b04268
https://doi.org/10.1021/acsomega.9b04268

[63] Kurniawan, M.; Norrman, J.; Paso, K. Pour Point Depressant Efficacy as a Function of Wax Chain-Length. J. Pet. Sci. Eng. 2022, 212, 110250. https://doi.org/10.1016/j.petrol.2022.110250
https://doi.org/10.1016/j.petrol.2022.110250

[64] Ruwoldt, J.; Humborstad Sørland, G.; Simon, S.; Oschmann, H.-J.; Sjöblom, J. Inhibitor-Wax Interactions and PPD Effect on Wax Crystallization: New Approaches for GC/MS and NMR, and Comparison with DSC, CPM, and Rheometry. J. Pet. Sci. Eng. 2019, 177, 53-68. https://doi.org/10.1016/j.petrol.2019.02.046
https://doi.org/10.1016/j.petrol.2019.02.046

[65] Vakili, S.; Mohammadi, S.; Mirzaei Derazi, A.; Mahmoudi Alemi, F.; Hayatizadeh, N.; Ghanbarpour, O.; Rashidi, F. Effect of Metal Oxide Nanoparticles on Wax Formation, Morphology, and Rheological Behavior in Crude Oil: An Experimental Study. J. Mol. Liq. 2021, 343, 117566. https://doi.org/10.1016/j.molliq.2021.117566
https://doi.org/10.1016/j.molliq.2021.117566

[66] Ridzuan, N.; Subramanie, P.; Uyop, M. Effect of Pour Point Depressant (PPD) and the Nanoparticles on the Wax Deposition, Viscosity and Shear Stress for Malaysian Crude Oil. Pet. Sci. Technol. 2020, 38, 929-935. https://doi.org/10.1080/10916466.2020.1730892
https://doi.org/10.1080/10916466.2020.1730892

[67] Wang, C.; Zhang, M.; Wang, W.; Ma, Q.; Zhang, S.; Huang, H.; Peng, Z.; Yao, H.; Li, Q.; Ding, Y. et al. Experimental Study of the Effects of a Nanocomposite Pour Point Depressant on Wax Deposition. Energy Fuels 2020, 34, 12239-12246. https://doi.org/10.1021/acs.energyfuels.0c02001
https://doi.org/10.1021/acs.energyfuels.0c02001

[68] Mansourpoor, M.; Azin, R.; Osfouri, S.; Izadpanah, A.A. Experimental Investigation of Wax Deposition From Waxy Oil Mixtures. Appl. Petrochem. Res. 2019, 9, 77-90. https://doi.org/10.1007/s13203-019-0228-y
https://doi.org/10.1007/s13203-019-0228-y

[69] VijayaKumar, S.; Zakaria, J.; Ridzuan, N. The role of Gemini Surfactant and SiO2/SnO/Ni2O3 Nanoparticles as Flow Improver of Malaysian Crude Oil. J. King Saud Univ. Eng. Sci. 2022, 34, 384-390. https://doi.org/10.1016/j.jksues.2021.03.009
https://doi.org/10.1016/j.jksues.2021.03.009

[70] Sun, M.; Rezaei, N.; Firoozabadi, A. Mitigating Wax Wax Deposition by Dispersants and Crystal Modifiers in Flow Testing. Fuel 2022, 324, 124687. https://doi.org/10.1016/j.fuel.2022.124687
https://doi.org/10.1016/j.fuel.2022.124687

[71] Ruwoldt, J., Kurniawan, M., Oschmann, H. Non-Linear Dependency of Wax Appearance Temperature on Cooling Rate. J. Pet. Sci. Eng. 2018, 165, 114-126. https://doi.org/10.1016/j.petrol.2018.02.011
https://doi.org/10.1016/j.petrol.2018.02.011

[72] Chi, Y.; Yang, J.; Sarica, C.; Daraboina, N. A Critical Review of Controlling Wax Deposition in Production Lines Using Chemicals. Energy Fuels 2019, 33, 2797-2809. https://doi.org/10.1021/acs.energyfuels.9b00316
https://doi.org/10.1021/acs.energyfuels.9b00316

[73] Pylypiv, L.D. Doslidzhennia Vplyvu Termoobrobky Vysokoviazkoi Dolynskoi Nafty na yii Reolohichni ta Transportabelni Vlastyvosti. Naftohazova Haluz Ukrainy 2015, 1, 18−20.

[74] Pylypiv, L.D. Analiz Efektyvnosti Vplyvu Termoobrobky Nafty na Hidravlichni Vtraty v Mahistralnomu Naftoprovodi. Mizhnarodnyi Naukovyi Zhurnal "Internauka" 2018, 10, 48−50.

[75] Li, W.; Li, H.; Da, H.; Hu, K.; Zhang, Y.; Teng, L. Influence of Pour Point Depressants (PPDs) on Wax Deposition: A Study on Wax Deposit Characteristics and Pipeline Pigging. Fuel Process. Technol. 2021, 217, 106817. https://doi.org/10.1016/j.fuproc.2021.106817
https://doi.org/10.1016/j.fuproc.2021.106817

[76] Eke, W.I.; Kyei, S.K.; Ajienka, J. et al. Effect of Bio-Based Flow Improver on the Microscopic and Low-Temperature Flow Properties of Waxy Crude Oil. J. Petrol. Explor. Prod. Technol. 2021, 11, 711-724. https://doi.org/10.1007/s13202-020-01078-x
https://doi.org/10.1007/s13202-020-01078-x

[77] Akinyemi, O.P.; Udonne, J.D.; Efeovbokhan, V.E.; Ayoola, A.A. A study on the Use of Plant Seed Oils, Triethanolamine and Xylene as Flow Improvers of Nigerian Waxy Crude Oil. J. Appl. Res. Technol. 2016, 14. https://doi.org/10.22201/icat.16656423.2016.14.3.40
https://doi.org/10.1016/j.jart.2016.04.006

[78] Tripathy, A.; Nath, G.; Paikaray, R. Ultrasonic Aided Dewaxing of Crude Oil in Petroleum Refinery. Mater. Today: Proc. 2018, 5, 25599-25604. https://doi.org/10.1016/j.matpr.2018.10.367
https://doi.org/10.1016/j.matpr.2018.10.367

[79] Fahim, M.A.; Alsahhaf, T.A.; Elkilani, A. Chapter 7 - Hydroconversion. In Fundamentals of Petroleum Refining, Elsevier, 2010; pp. 153-198. https://doi.org/10.1016/B978-0-444-52785-1.00007-3
https://doi.org/10.1016/B978-0-444-52785-1.00007-3

[80] Speight, J.G. Chapter 3 - Hydrocarbons from Crude Oil. In Handbook of Industrial Hydrocarbon Processes, 2nd ed. Gulf Professional Publishing, 2020; pp. 95-142. https://doi.org/10.1016/B978-0-12-809923-0.00003-5