Advanced Research on the Production, Transportation and Processing of High Waxy Oil. A Review
Attachment | Size |
---|---|
full_text.pdf | 502.16 KB |
[1] Yarmola, T; Topilnytskyy, P.; Romanchuk, V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17, 195-202. https://doi.org/10.23939/chcht17.01.195
https://doi.org/10.23939/chcht17.01.195
[2] Yarmola, T.V.; Topilnytskyy, P.I.; Skorokhoda V.J.; Korchak, B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 2023(1), 40-49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
https://doi.org/10.32434/0321-4095-2023-146-1-40-49
[3] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem Chem Technol. 2022; 16, 461-468. https://doi.org/10.23939/chcht16.03.461
https://doi.org/10.23939/chcht16.03.461
[4] Chen, X.; Hou, L.; Wei, X.; Bedrov, D. Transport Properties of Waxy Crude Oil: A Molecular Dynamics Simulation Study. CS Omega 2020, 5, 18557-18564. https://doi.org/10.1021/acsomega.0c00070
https://doi.org/10.1021/acsomega.0c00070
[5] Rehan, M.; Nizami A.-S.; Taylan, O.; Al-Sasi B.O. et al. Determination of Wax Content in Crude Oil. Pet. Sci. Technol. 2016, 34, 799-804. https://doi.org/10.1080/10916466.2016.1169287
https://doi.org/10.1080/10916466.2016.1169287
[6] Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow Start-Up and Transportation of Waxy Crude Oil in Pipelines-A Review. J. Non-Newton. Fluid Mech., 2018, 251, 69-87. https://doi.org/10.1016/j.jnnfm.2017.11.008
https://doi.org/10.1016/j.jnnfm.2017.11.008
[7] Vinay, G.; Bhaskoro, P.T.; Hénaut, I.; Sariman, M.Z.; Anuar, A.; Shafian, S.R.M. A Methodology to Investigate Factors Governing the Restart Pressure of a Malaysian Waxy Crude Oil Pipeline. J. Pet. Sci. Eng. Part E, 2022, 208, 109785. https://doi.org/10.1016/j.petrol.2021.109785
https://doi.org/10.1016/j.petrol.2021.109785
[8] López, D.; Ríos, A.A.; Marín, J.D.; Zabala, R.D.; Rincon, J.A.; Lopera, S.H.; Franco, C.A.; Cortés, F.B. SiO2-Based Nanofluids for the Inhibition of Wax Precipitation in Production Pipelines. ACS Omega 2023, 8(37), 33289-33298. https://doi.org/10.1021/acsomega.3c00802. PMID: 37744863; PMCID: PMC10515383
https://doi.org/10.1021/acsomega.3c00802
[9] Hao, L.Z.; Al-Salim, H.S.; Ridzuan, N. A Review of the Mechanism and Role of Wax Inhibitors. Pertanika J. Sci. Technol. 2019, 27(1), 499-526.
[10] Sousa, A.M.; Ribeiro, T.P.; Pereira, M.J.; Matos H.A. Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies 2023, 16(1), 120. https://doi.org/10.3390/en16010120
https://doi.org/10.3390/en16010120
[11] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. http://hdl.handle.net/10454/17283
https://doi.org/10.1016/j.ces.2019.115212
[12] Waxy Crude Oil Market Report 2022. https://www.businessresearchinsights.com/market-reports/waxy-crude-oil-m...
[13] Biletskyy, V. (Ed.). Mala Hirnycha Encyclopedia, vol. 2; Donbas, 2007.
[14] Mykhailov, V.A.; Karpenko, O.M.; Kurylo, M.M. et al. Horiuchi Korysni Kopalyny Ukrainy ta Yikhnia Heoloho-Ekonomichna Otsinka; Kyivskyi Universytet, 2018.
[15] de Oliveira, M.; Vieira, L.; Miranda, L.; Miranda, D.; Marques, L.C.C. On the Influence of Micro- and Macro-Cristalline Waxs on the Physical and Rheological Properties of Crude Oil and Organic Solvents. Chem.Сhem. Technol. 2016, 10, 451-458. https://doi.org/10.23939/chcht10.04.451
https://doi.org/10.23939/chcht10.04.451
[16] Serediuk, V.D. Laboratorni Doslidzhennia z Vykorystannia Reahentu Tvin 80 dlia Zapobihannia i Zmenshennia Asfaltenosmoloparafinovykh Vidkladiv u Naftovykh Sverdlovynakh. Rozvidka ta Rozrobka Naftovykh i Hazovykh Rodovyshch 2008, 2, 43-47.
[17] Ragunathan, T.; Husin, H.; Wood, C.D. Wax Formation Mechanisms, Wax Chemical Inhibitors and Factors Affecting Chemical Inhibition. Appl. Sci. 2020, 10, 479. https://doi.org/10.3390/app10020479
https://doi.org/10.3390/app10020479
[18] Olajire, A.A. Review of Wax Deposition in Subsea Oil Pipeline Systems and Mitigation Technologies in the Petroleum Industry. Chem. Eng. J. Adv. 2021, 6, 100104. https://doi.org/10.1016/j.ceja.2021.100104
https://doi.org/10.1016/j.ceja.2021.100104
[19] Pedersen, K. S.; Rønningsen, H. P. Influence of Wax Inhibitors on Wax Appearance Temperature, Pour Point, and Viscosity of Waxy Crude Oils. Energy Fuels 2003, 17, 321- 328, https://doi.org/10.1021/ef020142+
https://doi.org/10.1021/ef020142
[20] Kök, M.V.; Varfolomeev, M.A.; Nurgaliev, D.K. Wax Appearance Temperature (WAT) Determinations of Different Origin Crude Oils by Differential Scanning Calorimetry. J. Pet. Sci. Eng. 2018, 168, 542-545. https://doi.org/10.1016/j.petrol.2018.05.045
https://doi.org/10.1016/j.petrol.2018.05.045
[21] Behbahani, T.J.; Beigi, A.A.M.; Taheri, Z.; Ghanbari, B. Investigation of Wax Precipitation in Crude Oil: Experimental and Modeling. Petroleum 2015, 1, 223-230. https://doi.org/10.1016/j.petlm.2015.07.007
https://doi.org/10.1016/j.petlm.2015.07.007
[22] Mansoori, A. Wax/Wax and Waxy Crude Oil: The Role of Temperature on Heavy Organics Deposition from Petroleum Fluids, 2009. [Online]. https://mansoori.people.uic.edu/Wax.and.Waxy.Crude_html (accessed 2023-11-21).
[23] Makwashi, N.; Zhao, D.; Abdulkadir, M.; Ahmed, T.; Muhammad, I. Study on Waxy Crudes Characterisation and Chemical Inhibitor Assessment. J.Pet. Sci. Eng. 2021, 204, 108734. https://doi.org/10.1016/j.petrol.2021.108734
https://doi.org/10.1016/j.petrol.2021.108734
[24] Lira-Galeana, C.; Hammami, A. Wax Precipitation from Petroleum Fluids: A Review. In The, F.Y.; Chilingarian, G.V. (Eds.), Developments in Petroleum Science; Elsevier 2000, pp. 557-608. https://doi.org/10.1016/S0376-7361(09)70292-4
https://doi.org/10.1016/S0376-7361(09)70292-4
[25] Pu, H.; Ai, M.; Miao, Q.; Yan, F. (2014). The Structural Characteristics of Low-Temperature Waxy Crude. Pet. Sci. Technol. 2014, 32, 646-653. https://doi.org/10.1080/10916466.2013.862267
https://doi.org/10.1080/10916466.2013.862267
[26] Misra, S.; Baruah, S.; Singh, K. Wax Problems in Crude Oil Production and Transportation: A Review. SPE Prod. Facil. 1995, 10, 50-54. https://doi.org/10.2118/28181-PA
https://doi.org/10.2118/28181-PA
[27] Garcia, M.; Urbina, A. Effect of Crude Oil Composition and Blending on Flowing Properties. Pet. Sci. Technol. 2003, 21, 863-878. https://doi.org/10.1081/LFT-120017454
https://doi.org/10.1081/LFT-120017454
[28] Тarantino, G.B.; Vieira, L.C.; Pinheiro, S.B.; Mattedi, S.; Santos, L.C.L.; Pires, C.A.M.; Góis, L.M.N.; Santos, P.C.S. Characterization and Evaluation of Waxy Crude Oil Flow. Braz. J. Chem. Eng. 2016, 33, 1063- 1071. https://doi.org/10.1590/0104-6632.20160334s20150103
https://doi.org/10.1590/0104-6632.20160334s20150103
[29] Olayiwola, S.O.; Dejam, M. Interfacial Energy for Solutions of Nanoparticles, Surfactants, and Electrolytes. AIChE J. 2020, 66, e1689. https://doi.org/10.1002/aic.16891
https://doi.org/10.1002/aic.16891
[30] Olayiwola, S.O.; Dejam, M. Experimental Study on the Viscosity Behavior of Silica Nanofluids With Different Ions of Electrolytes. Ind. Eng. Chem. Res. 2020, 59, 3575-3583. https://doi.org/10.1021/acs.iecr.9b06275
https://doi.org/10.1021/acs.iecr.9b06275
[31] Liu, J.; Zhao, Y. P.; Ren, S. L. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels 2015, 29, 1233- 1242, https://doi.org/10.1021/ef5019737
https://doi.org/10.1021/ef5019737
[32] Yang, J.; Lu, Y., Daraboina, N.; Sarica, C. Wax Deposition Mechanisms: Is the Current Description Sufficient? Fuel 2020, 275, 17937. https://doi.org/10.1016/j.fuel.2020.117937
https://doi.org/10.1016/j.fuel.2020.117937
[33] Melnyk, A.P..; Kryvulia, S.V.; Malik, S.G.; Dehtiarov, D.O. Doslidzhennia Vplyvu Reahentiv na Znyzhennia Temperatury Zastyhannia Nafty. Naftohazova Haluz Ukrainy 2015, 6, 18-21.
[34] Gabayan, R.C.M.; Sulaimon, A.A.; Jufar, S.R. Application of Bio-Derived Alternatives for the Assured Flow of Waxy Crude Oil: A Review. Energies 2023, 16(9), 3652. https://doi.org/10.3390/en16093652
https://doi.org/10.3390/en16093652
[35] Kiyingi, W.; Guo, J.; Xiong, R.; Su, L.; Yang, X.; Zhang, S. (2022). Crude Oil Wax: A Review on Formation, Experimentation, Prediction, and Remediation Techniques. Pet. Sci. 2022, 19, 2343-2357. https://doi.org/10.1016/j.petsci.2022.08.008
https://doi.org/10.1016/j.petsci.2022.08.008
[36] El-Dalatony, M.M.; Jeon, B-H.; Salama, E-S.; Eraky, M.; Kim, W.B.; Wang, J.; Ahn, T. Occurrence and Characterization of Wax Wax Formed in Developing Wells and Pipelines. Energies 2019, 12(6), 967. https://doi.org/10.3390/en12060967
https://doi.org/10.3390/en12060967
[37] Thota, S.T.; Onyeanuna, C.C. Mitigation of Wax in Oil Pipelines. Int. j. Eng. Res. Rev. 2016, 4, 39-47.
[38] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Al-Shehri, D.; Al-Nakhli, A. R.; Bataweel, M. A. Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals. Sustainability 2019, 11, 2838. https://doi.org/10.3390/su11102838
https://doi.org/10.3390/su11102838
[39] Mahmoud, M. Well Clean-Up Using a Combined Thermochemical/Chelating Agent Fluid. J. Energy Resour. Technol. 2019, 141, 102905. https://doi.org/10.1115/1.4043612
https://doi.org/10.1115/1.4043612
[40] Hassan, A. M.; Mahmoud, M. A.; Al-Majed, A. A.; Elkatatny, S.; Al-Nakhli, A. R.; Bataweel, M. A. Novel Technique to Eliminate Gas Condensation in Gas Condensate Reservoirs Using Thermochemical Fluids. Energy Fuels 2018, 32, 12843-12850. https://doi.org/10.1021/acs.energyfuels.8b03604
https://doi.org/10.1021/acs.energyfuels.8b03604
[41] Sousa, A.L.; Matos, H.A.; Guerreiro, L.P. Preventing and Removing Wax Deposition Inside Vertical Wells: A Review. J. Pet. Explor. Prod. Technol. 2019, 9, 2091-2107. https://doi.org/10.1007/s13202-019-0609-x
https://doi.org/10.1007/s13202-019-0609-x
[42] Golczynski, T.S.; Kempton, E.C. Understanding Wax Problems Leads to Deepwater Flow Assurance Solutions. World Oil 2006, 227, 7-10.
[43] Jovanović, S.; Tolmač, J.; Prvulovic, S.; Marković, M.; Lalović, B.; Tolmač, D. (2021). Analiza Obrade Visokoparafinskih Nafti Dodatkom Modifikatora Reoloških Osobina. Zbornik Međunarodnog Kongresa O Procesnoj Industriji - Procesing [S.l.] 2021, 34, 113-118. https://doi.org/10.24094//ptk.021.34.1.113
https://doi.org/10.24094//ptk.021.34.1.113
[44] Maneeintr, K.; Ruengnam, T.; Taweeaphiradeemanee, T.; Tuntitanakij, T. Wax Inhibitor Performance Comparison for Waxy Crude Oil from Fang Oilfield. E3S Web of Conferences, 2021, 294, 06005. https://doi.org/10.1051/e3sconf/202129406005
https://doi.org/10.1051/e3sconf/202129406005
[45] Liu, T.; Fang, L.; Liu, X.; Zhang, X. Preparation of a Kind of Reactive Pour Point Depressant and its Action Mechanism. Fuel 2015, 143, 448-454, https://doi.org/10.1016/j.fuel.2014.11.094
https://doi.org/10.1016/j.fuel.2014.11.094
[46] Wijayanto, T.; Kurihara, M.; Kurniawan, T.; Muraza, O. Experimental Investigation of Aluminosilicate Nanoparticles for Enhanced Recovery of Waxy Crude Oil. Energy Fuels 2019, 33, 6076-6082. https://doi.org/10.1021/acs.energyfuels.9b00781
https://doi.org/10.1021/acs.energyfuels.9b00781
[47] Liu, Y.; Jing, G.; Sun, Z. et al. A Mini-Review of Nanocomposite Pour Point Depressants. Pet. Chem. 2023, https://doi.org/10.1134/S0965544123050031
https://doi.org/10.1134/S0965544123050031
[48] Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, Q.; Gong, J. The Influence of Nanocomposite Pour Point Depressant on the Crystallization of Waxy Oil. Fuel 2018, 221, 257-268. https://doi.org/10.1016/j.fuel.2018.01.040
https://doi.org/10.1016/j.fuel.2018.01.040
[49] Nalyvaiko, O.I.; Vynnykov, Yu.L.; Nalyvaiko, L.G.; Petrash, R.V.; Ichanska, N.V.; Chyhyriov V.V. Tekhnolohiia Vplyvu Mahnitnoho Polia na Vysokoparafinystu Naftu u Truboprovodakh Riznoho Diametru. Academic Journal Industrial Machine Building, Civil Engineering 2018, 1, 208-213. https://doi.org/10.26906/znp.2018.50.1077
https://doi.org/10.26906/znp.2018.50.1077
[50] Alnaimat, F.; Ziauddin, M.; Mathew, B. Wax Deposition in Crude Oil Transport Lines and Wax Estimation Methods. In Yi, Y. (Cindy) (Ed.) Intelligent System and Computing. IntechOpen 2020. https://doi.org/10.5772/intechopen.89459
https://doi.org/10.5772/intechopen.89459
[51] Oh, K.; Jemmett, M.; Deo, M. Yield Behavior of Gelled Waxy Oil: Effect of Stress Application in Creep Ranges. Ind. Eng. Chem. Res. 2009, 48 (19), 8950-8953. https://doi.org/10.1021/ie9000597
https://doi.org/10.1021/ie9000597
[52] Bai, C.; Zhang, J. Effect of Carbon Number Distribution of Wax on the Yield Stress of Waxy Oil Gels. Ind. Eng. Chem. Res. 2013, 52 (7), 2732-2739. https://doi.org/10.1021/ie303371c
https://doi.org/10.1021/ie303371c
[53] Topilnytskyy, P.; Romanchuk, V., Yarmola, T; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412-419. https://doi.org/10.23939/chcht14.03.412
https://doi.org/10.23939/chcht14.03.412
[54] Janamatti, A.; Lu, Y.; Ravichandran, S.; Sarica, C.; Daraboina, N. Influence of Operating Temperatures on Long-Duration Wax Deposition in Flow Lines. J. Pet. Sci. Eng. 2019, 183, 106373, https://doi.org/10.1016/j.petrol.2019.106373
https://doi.org/10.1016/j.petrol.2019.106373
[55] Mohyaldinn, M.E.; Husin, H.; Hasan, N.; Elmubarak, M.M.B.; Genefid, A.M.E.; Dheeb, M.E.A. (2019). Challenges during Operation and Shutdown of Waxy Crude Pipelines. In Gounder, R.M. (Ed.), Processing of Heavy Crude Oils - Challenges and Opportunities. IntechOpen 2019. https://doi.org/10.5772/intechopen.89489
https://doi.org/10.5772/intechopen.89489
[56] Theyab, M.A. Wax Deposition Process: Mechanisms, Affecting Factors and Mitigation Methods. Open Access J. Sci. 2018, 2, 112-118. https://doi.org/10.15406/oajs.2018.02.00054
https://doi.org/10.15406/oajs.2018.02.00054
[57] Pylypiv, L.D. Osoblyvosti Budovy Tverdykh Vuhlevodniv ta yikh Vplyv na Rukh Nafty Truboprovodamy. Naftohazova Enerhetyka 2013, 1, 60-67.
[58] Fakroun, A.; Benkreira, H. Rheology of Waxy Crude Oils in Relation to Restart of Gelled Pipelines. Chem. Eng. Sci. 2020, 211, 115212. https://doi.org/10.1016/j.ces.2019.115212
https://doi.org/10.1016/j.ces.2019.115212
[59] Elkatory, M.R.; Soliman, E.A.; El Nemr, A.; Hassaan, M.A.; Ragab, S.; El-Nemr, M.A.; Pantaleo, A. Mitigation and Remediation Technologies of Waxy Crude Oils' Deposition within Transportation Pipelines: A Review. Polymers (Basel) 2022, 14, 3231. https://doi.org/10.3390/polym14163231
https://doi.org/10.3390/polym14163231
[60] White, M.; Pierce, K.; Acharya, T. A Review of Wax-Formation/Mitigation Technologies in the Petroleum Industry. SPE Prod. Oper. 2017, 33, 1-10. https://doi.org/10.2118/189447-PA
https://doi.org/10.2118/189447-PA
[61] Li, Y.F.; Tsai, T.H.; Yang, T.H. A Novel Strengthening Method for Damaged Pipeline Under High Temperature Using Inorganic Insulation Material and Carbon Fiber Reinforced Plastic Composite Material. Materials 2019, 12, 3484. https://doi.org/10.3390/ma12213484
https://doi.org/10.3390/ma12213484
[62] Alade, O.S.; Hassan, A.; Mahmoud, M.; Al-Shehri, D.; Al-Majed, A. Novel Approach for Improving the Flow of Waxy Crude Oil Using Thermochemical Fluids: Experimental and Simulation Study. ACS Omega 2020, 5, 4313-4321. https://doi.org/10.1021/acsomega.9b04268
https://doi.org/10.1021/acsomega.9b04268
[63] Kurniawan, M.; Norrman, J.; Paso, K. Pour Point Depressant Efficacy as a Function of Wax Chain-Length. J. Pet. Sci. Eng. 2022, 212, 110250. https://doi.org/10.1016/j.petrol.2022.110250
https://doi.org/10.1016/j.petrol.2022.110250
[64] Ruwoldt, J.; Humborstad Sørland, G.; Simon, S.; Oschmann, H.-J.; Sjöblom, J. Inhibitor-Wax Interactions and PPD Effect on Wax Crystallization: New Approaches for GC/MS and NMR, and Comparison with DSC, CPM, and Rheometry. J. Pet. Sci. Eng. 2019, 177, 53-68. https://doi.org/10.1016/j.petrol.2019.02.046
https://doi.org/10.1016/j.petrol.2019.02.046
[65] Vakili, S.; Mohammadi, S.; Mirzaei Derazi, A.; Mahmoudi Alemi, F.; Hayatizadeh, N.; Ghanbarpour, O.; Rashidi, F. Effect of Metal Oxide Nanoparticles on Wax Formation, Morphology, and Rheological Behavior in Crude Oil: An Experimental Study. J. Mol. Liq. 2021, 343, 117566. https://doi.org/10.1016/j.molliq.2021.117566
https://doi.org/10.1016/j.molliq.2021.117566
[66] Ridzuan, N.; Subramanie, P.; Uyop, M. Effect of Pour Point Depressant (PPD) and the Nanoparticles on the Wax Deposition, Viscosity and Shear Stress for Malaysian Crude Oil. Pet. Sci. Technol. 2020, 38, 929-935. https://doi.org/10.1080/10916466.2020.1730892
https://doi.org/10.1080/10916466.2020.1730892
[67] Wang, C.; Zhang, M.; Wang, W.; Ma, Q.; Zhang, S.; Huang, H.; Peng, Z.; Yao, H.; Li, Q.; Ding, Y. et al. Experimental Study of the Effects of a Nanocomposite Pour Point Depressant on Wax Deposition. Energy Fuels 2020, 34, 12239-12246. https://doi.org/10.1021/acs.energyfuels.0c02001
https://doi.org/10.1021/acs.energyfuels.0c02001
[68] Mansourpoor, M.; Azin, R.; Osfouri, S.; Izadpanah, A.A. Experimental Investigation of Wax Deposition From Waxy Oil Mixtures. Appl. Petrochem. Res. 2019, 9, 77-90. https://doi.org/10.1007/s13203-019-0228-y
https://doi.org/10.1007/s13203-019-0228-y
[69] VijayaKumar, S.; Zakaria, J.; Ridzuan, N. The role of Gemini Surfactant and SiO2/SnO/Ni2O3 Nanoparticles as Flow Improver of Malaysian Crude Oil. J. King Saud Univ. Eng. Sci. 2022, 34, 384-390. https://doi.org/10.1016/j.jksues.2021.03.009
https://doi.org/10.1016/j.jksues.2021.03.009
[70] Sun, M.; Rezaei, N.; Firoozabadi, A. Mitigating Wax Wax Deposition by Dispersants and Crystal Modifiers in Flow Testing. Fuel 2022, 324, 124687. https://doi.org/10.1016/j.fuel.2022.124687
https://doi.org/10.1016/j.fuel.2022.124687
[71] Ruwoldt, J., Kurniawan, M., Oschmann, H. Non-Linear Dependency of Wax Appearance Temperature on Cooling Rate. J. Pet. Sci. Eng. 2018, 165, 114-126. https://doi.org/10.1016/j.petrol.2018.02.011
https://doi.org/10.1016/j.petrol.2018.02.011
[72] Chi, Y.; Yang, J.; Sarica, C.; Daraboina, N. A Critical Review of Controlling Wax Deposition in Production Lines Using Chemicals. Energy Fuels 2019, 33, 2797-2809. https://doi.org/10.1021/acs.energyfuels.9b00316
https://doi.org/10.1021/acs.energyfuels.9b00316
[73] Pylypiv, L.D. Doslidzhennia Vplyvu Termoobrobky Vysokoviazkoi Dolynskoi Nafty na yii Reolohichni ta Transportabelni Vlastyvosti. Naftohazova Haluz Ukrainy 2015, 1, 18−20.
[74] Pylypiv, L.D. Analiz Efektyvnosti Vplyvu Termoobrobky Nafty na Hidravlichni Vtraty v Mahistralnomu Naftoprovodi. Mizhnarodnyi Naukovyi Zhurnal "Internauka" 2018, 10, 48−50.
[75] Li, W.; Li, H.; Da, H.; Hu, K.; Zhang, Y.; Teng, L. Influence of Pour Point Depressants (PPDs) on Wax Deposition: A Study on Wax Deposit Characteristics and Pipeline Pigging. Fuel Process. Technol. 2021, 217, 106817. https://doi.org/10.1016/j.fuproc.2021.106817
https://doi.org/10.1016/j.fuproc.2021.106817
[76] Eke, W.I.; Kyei, S.K.; Ajienka, J. et al. Effect of Bio-Based Flow Improver on the Microscopic and Low-Temperature Flow Properties of Waxy Crude Oil. J. Petrol. Explor. Prod. Technol. 2021, 11, 711-724. https://doi.org/10.1007/s13202-020-01078-x
https://doi.org/10.1007/s13202-020-01078-x
[77] Akinyemi, O.P.; Udonne, J.D.; Efeovbokhan, V.E.; Ayoola, A.A. A study on the Use of Plant Seed Oils, Triethanolamine and Xylene as Flow Improvers of Nigerian Waxy Crude Oil. J. Appl. Res. Technol. 2016, 14. https://doi.org/10.22201/icat.16656423.2016.14.3.40
https://doi.org/10.1016/j.jart.2016.04.006
[78] Tripathy, A.; Nath, G.; Paikaray, R. Ultrasonic Aided Dewaxing of Crude Oil in Petroleum Refinery. Mater. Today: Proc. 2018, 5, 25599-25604. https://doi.org/10.1016/j.matpr.2018.10.367
https://doi.org/10.1016/j.matpr.2018.10.367
[79] Fahim, M.A.; Alsahhaf, T.A.; Elkilani, A. Chapter 7 - Hydroconversion. In Fundamentals of Petroleum Refining, Elsevier, 2010; pp. 153-198. https://doi.org/10.1016/B978-0-444-52785-1.00007-3
https://doi.org/10.1016/B978-0-444-52785-1.00007-3
[80] Speight, J.G. Chapter 3 - Hydrocarbons from Crude Oil. In Handbook of Industrial Hydrocarbon Processes, 2nd ed. Gulf Professional Publishing, 2020; pp. 95-142. https://doi.org/10.1016/B978-0-12-809923-0.00003-5