Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Adsorption Desulfurization of Simulated Diesel Fuel Using Graphene Oxide

Qahtan A. Mahmood1, Jasim I. Humadi1, Rafi J. Algawi1, Amer T. Nawaf1, Ihab A. Ahmed2
Affiliation: 
1 Department of Petroleum and Gas Refining Engineering, College of Petroleum Processes Engineering, Tikrit University, Iraq 2 Tikrit University, College of Chemistry, North Refinery Company, Oil Ministry, Iraq jasim_alhashimi_ppe@tu.edu.iq
DOI: 
https://doi.org/10.23939/chcht18.03.436
AttachmentSize
PDF icon full_text.pdf878.06 KB
Abstract: 
Graphene oxide (GO) was synthesized from graphite powder by the improved Hammers method and used for the adsorption of organosulfur compound (dibenzothiophene, DBT) from model diesel fuel. FT-IR spectroscopy, X-ray diffraction, SEM, EDX, and BET were used to characterize the GO. Several factors, such as solution pH, initial DBT concentration, adsorption contact time, adsorption temperature, and adsorbent dosage were used to test the DBT removal efficiency. The results show that the maximum removal was 96.4% at pH = 5, initial solution concentration of 200 ppm, adsorption time of 45 min, temperature of 45C and adsorbent dosage of 0.4 g/25 mL.
References: 

[1] Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-Shahat, M.F. Oxidative Desulfurization Using Graphene and its Composites for Fuel Containing Thiophene and its Derivatives: An Update Review. Egypt. J. Pet. 2018, 27, 715-730. https://doi.org/10.1016/j.ejpe.2017.10.006
https://doi.org/10.1016/j.ejpe.2017.10.006

[2] Rajendran, A.; Cui, T.; Fan, H.; Yang, Z.; Feng, J.; Li, W. A Comprehensive Review on Oxidative Desulfurization Catalysts Targeting Clean Energy and Environment. J. Mater. Chem. A 2020, 8, 2246-2285. https://doi.org/10.1039/C9TA12555H
https://doi.org/10.1039/C9TA12555H

[3] Roman, F.F.; de Tuesta, J.L.D.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review. Catalysts 2021, 11, 1239. https://www.mdpi.com/2073-4344/11/10/1239
https://doi.org/10.3390/catal11101239

[4] Silva, D.F.; Viana, A.M.; Mirante, F.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Removing Simultaneously Sulfur and Nitrogen from Fuel under a Sustainable Oxidative Catalytic System. Sustain. Chem. 2021, 2, 382-391. https://doi.org/10.3390/suschem2020022
https://doi.org/10.3390/suschem2020022

[5] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B,B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414-422. https://doi.org/10.23939/chcht15.03.414
https://doi.org/10.23939/chcht15.03.414

[6] Pysh'yev, S. Application of Non-Catalytic Oxidative Desulfurization Process for Obtaining Diesel Fuels With Improved Lubricity. Chem. Chem. Technol. 2012, 6, 229-235. https://doi.org/10.23939/chcht06.02.229
https://doi.org/10.23939/chcht06.02.229

[7] Mirshafiee, F.; Movahedirad, S.; Sobati, M.A.; Alaee, R.; Zarei, S.; Sargazi, H. Current Status and Future Prospects of Oxidative Desulfurization of Naphtha: A Review. Process Saf. Environ. Prot. 2023, 170, 54-75. https://doi.org/10.1016/j.psep.2022.11.080
https://doi.org/10.1016/j.psep.2022.11.080

[8] Ahmed, O.U.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I.M. Efficient Non-Catalytic Oxidative and Extractive Desulfurization of Liquid Fuels Using Ionic Liquids. RSC Adv. 2016, 6, 103606-103617. https://doi.org/10.1039/C6RA22032K
https://doi.org/10.1039/C6RA22032K

[9] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS Omega 2022, 7, 26495-26503. https://doi.org/10.1021/acsomega.2c02527
https://doi.org/10.1021/acsomega.2c02527

[10] Naife, T.M.; Finish, Q.G. Adsorption Desulfurization of Iraqi Light Naphtha Using Metals Modified Activated Carbon. Chem. Pet. Environ. Eng. 2021, 27, 24-41. https://doi.org/10.31026/j.eng.2021.07.03
https://doi.org/10.31026/j.eng.2021.07.03

[11] Joy, R.; Balakrishnan, N.T.M.; Das, A. Graphene: Chemistry and Applications for Lithium-Ion Batteries. Electrochem. 2022, 3, 143-183. https://doi.org/10.3390/electrochem3010010
https://doi.org/10.3390/electrochem3010010

[12] Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. Sensors 2022, 22, 355. https://doi.org/10.3390/s22010355
https://doi.org/10.3390/s22010355

[13] Kubesa, O. Use of Graphene for Biosensors. Ph.D. Thesis, Masaryk University, 2017.

[14] Yu, H.; Zha, B.; Chaoke, B.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. https://doi.org/10.1038/srep36143
https://doi.org/10.1038/srep36143

[15] Ridzuan, N.D.M.; Shaharun, M.S.; Lee, K.M.; Din, I.U., Puspitasari, P. Influence of Nickel Loading on Reduced Graphene Oxide-Based Nickel Catalysts for the Hydrogenation of Carbon Dioxide to Methane. Catalysts 2020, 10, 471. https://doi.org/10.3390/catal10050471
https://doi.org/10.3390/catal10050471

[16] Mahmudunnabi, D.M.; Alam, M.Z.; Nurnabi, M. Application of Graphene Oxide for the Removal of Textile Dye FD-R H / C from Aqueous Solution. J. Mater. Environ. Sci. 2020, 11, 531-539.

[17] Ahmad, W.; Rahman. A.U.; Ahmad. I. Oxidative Desulfurization of Petroleum Distillate Fractions Using Manganese Dioxide Supported on Magnetic Reduced Graphene Oxide as Catalyst. Nanomaterials 2021, 11, 203. https://doi.org/10.3390/nano11010203
https://doi.org/10.3390/nano11010203

[18] Lacina, K.; Kubesa, O.; Horáčková, V.; Moravec, Z.; Kuta, J.; Vanýsek, P.; Skládal, P. Graphene Oxide from Improved Hummers' Method: Is This Material Suitable for Reproducible Electrochemical (Bio)Sensing. ECS J. Solid State Sci. Technol. 2018, 7, M166. https://doi.org/10.1149/2.0171810jss
https://doi.org/10.1149/2.0171810jss

[19] Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and their Nanocomposites. Nano Mater. Sci. 2019, 1, 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004
https://doi.org/10.1016/j.nanoms.2019.02.004

[20] Otaghsaraei, S.S.; Kazemeini, M.; Hasannia, S.; Ekramipooya, A. Deep Oxidative Desulfurization via rGO-immobilized Tin Oxide Nanocatalyst: Experimental and Theoretical Perspectives. Adv. Powder Technol. 2022, 33, 103499. https://doi.org/10.1016/j.apt.2022.103499
https://doi.org/10.1016/j.apt.2022.103499

[21] Hameed, T.; Jaafar, A. Ultra-sound Assisted Nano Y- zeolite / Mn Adsorbent to Removed Sulfur from Crude Oil. Turkish J. Comput. Math. Educ. 2021, 12, 5652-5657. https://turcomat.org/index.php/turkbilmat/article/view/2239/1958
https://doi.org/10.17762/turcomat.v12i3.2239

[22] Chen, C.; Wang, G.; Yang, Y.; Liu, X. Efficient Adsorptive Removal of Dibenzothiophene by Graphene Oxide-Based Surface Molecularly Imprinted Polymer. RSC Adv. 2014, 4, 1469-1475. https://doi.org/10.1039/C3RA45354E
https://doi.org/10.1039/C3RA45354E

[23] De Chimie, R.R.; Bayrakçeken, F.; Anci, N.İ.Ş. Synthesis and Characterization of Graphene Oxide/Gold Nanoparticles/Dibenzothiophene Heterogeneous Nanostructures. Rev. Roum. Chim. 2020, 65, 777-782. https://doi.org/10.33224/rrch.2020.65.9.02
https://doi.org/10.33224/rrch.2020.65.9.02

[24] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169-176. https://doi.org/10.23939/chcht16.02.169
https://doi.org/10.23939/chcht16.02.169

[25] Sikandar, S.; Ahmad, I.; Ahmad, W. Adsorptive Desulphurization Study of Liquid Fuels Using Tin (Sn) Impregnated Activated Charcoal. J. Hazard. Mater. 2016, 304, 205-213. https://doi.org/10.1016/j.jhazmat.2015.10.046
https://doi.org/10.1016/j.jhazmat.2015.10.046

[26] Jaber, H.A.; Jabbar, M.F.A. Adsorption of Cationic and Anionic Dyes from Aqueous Solution Using Sunflower Husk. Chem. Chem. Technol. 2021, 15, 567-574. https://doi.org/10.23939/chcht15.04.567
https://doi.org/10.23939/chcht15.04.567

[27] Kadhum, A.T.; Albayati, T.M. Desulfurization of Real Diesel Fuel onto Mesoporous Silica MCM-41 Implementing Batch Adsorption Process : Equilibrium , Kinetics, and Thermodynamic Studies. Eng. Technol. J. 2022, 40, 1144-1157. https://doi.org/10.30684/etj.2022.132385.1110
https://doi.org/10.30684/etj.2022.132385.1110

[28] Deivasigamani, P.; Ponnusamy, S.K.; Sundararaman, S.; Suresh, A. Superhigh Adsorption of Cadmium (II) Ions onto Surface Modified Nano Zerovalent Iron Composite (CNS-NZVI): Characterization, Adsorption, Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
https://doi.org/10.23939/chcht15.04.457