Adsorption Desulfurization of Simulated Diesel Fuel Using Graphene Oxide
Attachment | Size |
---|---|
full_text.pdf | 878.06 KB |
[1] Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-Shahat, M.F. Oxidative Desulfurization Using Graphene and its Composites for Fuel Containing Thiophene and its Derivatives: An Update Review. Egypt. J. Pet. 2018, 27, 715-730. https://doi.org/10.1016/j.ejpe.2017.10.006
https://doi.org/10.1016/j.ejpe.2017.10.006
[2] Rajendran, A.; Cui, T.; Fan, H.; Yang, Z.; Feng, J.; Li, W. A Comprehensive Review on Oxidative Desulfurization Catalysts Targeting Clean Energy and Environment. J. Mater. Chem. A 2020, 8, 2246-2285. https://doi.org/10.1039/C9TA12555H
https://doi.org/10.1039/C9TA12555H
[3] Roman, F.F.; de Tuesta, J.L.D.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review. Catalysts 2021, 11, 1239. https://www.mdpi.com/2073-4344/11/10/1239
https://doi.org/10.3390/catal11101239
[4] Silva, D.F.; Viana, A.M.; Mirante, F.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Removing Simultaneously Sulfur and Nitrogen from Fuel under a Sustainable Oxidative Catalytic System. Sustain. Chem. 2021, 2, 382-391. https://doi.org/10.3390/suschem2020022
https://doi.org/10.3390/suschem2020022
[5] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B,B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414-422. https://doi.org/10.23939/chcht15.03.414
https://doi.org/10.23939/chcht15.03.414
[6] Pysh'yev, S. Application of Non-Catalytic Oxidative Desulfurization Process for Obtaining Diesel Fuels With Improved Lubricity. Chem. Chem. Technol. 2012, 6, 229-235. https://doi.org/10.23939/chcht06.02.229
https://doi.org/10.23939/chcht06.02.229
[7] Mirshafiee, F.; Movahedirad, S.; Sobati, M.A.; Alaee, R.; Zarei, S.; Sargazi, H. Current Status and Future Prospects of Oxidative Desulfurization of Naphtha: A Review. Process Saf. Environ. Prot. 2023, 170, 54-75. https://doi.org/10.1016/j.psep.2022.11.080
https://doi.org/10.1016/j.psep.2022.11.080
[8] Ahmed, O.U.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I.M. Efficient Non-Catalytic Oxidative and Extractive Desulfurization of Liquid Fuels Using Ionic Liquids. RSC Adv. 2016, 6, 103606-103617. https://doi.org/10.1039/C6RA22032K
https://doi.org/10.1039/C6RA22032K
[9] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS Omega 2022, 7, 26495-26503. https://doi.org/10.1021/acsomega.2c02527
https://doi.org/10.1021/acsomega.2c02527
[10] Naife, T.M.; Finish, Q.G. Adsorption Desulfurization of Iraqi Light Naphtha Using Metals Modified Activated Carbon. Chem. Pet. Environ. Eng. 2021, 27, 24-41. https://doi.org/10.31026/j.eng.2021.07.03
https://doi.org/10.31026/j.eng.2021.07.03
[11] Joy, R.; Balakrishnan, N.T.M.; Das, A. Graphene: Chemistry and Applications for Lithium-Ion Batteries. Electrochem. 2022, 3, 143-183. https://doi.org/10.3390/electrochem3010010
https://doi.org/10.3390/electrochem3010010
[12] Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. Sensors 2022, 22, 355. https://doi.org/10.3390/s22010355
https://doi.org/10.3390/s22010355
[13] Kubesa, O. Use of Graphene for Biosensors. Ph.D. Thesis, Masaryk University, 2017.
[14] Yu, H.; Zha, B.; Chaoke, B.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. https://doi.org/10.1038/srep36143
https://doi.org/10.1038/srep36143
[15] Ridzuan, N.D.M.; Shaharun, M.S.; Lee, K.M.; Din, I.U., Puspitasari, P. Influence of Nickel Loading on Reduced Graphene Oxide-Based Nickel Catalysts for the Hydrogenation of Carbon Dioxide to Methane. Catalysts 2020, 10, 471. https://doi.org/10.3390/catal10050471
https://doi.org/10.3390/catal10050471
[16] Mahmudunnabi, D.M.; Alam, M.Z.; Nurnabi, M. Application of Graphene Oxide for the Removal of Textile Dye FD-R H / C from Aqueous Solution. J. Mater. Environ. Sci. 2020, 11, 531-539.
[17] Ahmad, W.; Rahman. A.U.; Ahmad. I. Oxidative Desulfurization of Petroleum Distillate Fractions Using Manganese Dioxide Supported on Magnetic Reduced Graphene Oxide as Catalyst. Nanomaterials 2021, 11, 203. https://doi.org/10.3390/nano11010203
https://doi.org/10.3390/nano11010203
[18] Lacina, K.; Kubesa, O.; Horáčková, V.; Moravec, Z.; Kuta, J.; Vanýsek, P.; Skládal, P. Graphene Oxide from Improved Hummers' Method: Is This Material Suitable for Reproducible Electrochemical (Bio)Sensing. ECS J. Solid State Sci. Technol. 2018, 7, M166. https://doi.org/10.1149/2.0171810jss
https://doi.org/10.1149/2.0171810jss
[19] Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and their Nanocomposites. Nano Mater. Sci. 2019, 1, 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004
https://doi.org/10.1016/j.nanoms.2019.02.004
[20] Otaghsaraei, S.S.; Kazemeini, M.; Hasannia, S.; Ekramipooya, A. Deep Oxidative Desulfurization via rGO-immobilized Tin Oxide Nanocatalyst: Experimental and Theoretical Perspectives. Adv. Powder Technol. 2022, 33, 103499. https://doi.org/10.1016/j.apt.2022.103499
https://doi.org/10.1016/j.apt.2022.103499
[21] Hameed, T.; Jaafar, A. Ultra-sound Assisted Nano Y- zeolite / Mn Adsorbent to Removed Sulfur from Crude Oil. Turkish J. Comput. Math. Educ. 2021, 12, 5652-5657. https://turcomat.org/index.php/turkbilmat/article/view/2239/1958
https://doi.org/10.17762/turcomat.v12i3.2239
[22] Chen, C.; Wang, G.; Yang, Y.; Liu, X. Efficient Adsorptive Removal of Dibenzothiophene by Graphene Oxide-Based Surface Molecularly Imprinted Polymer. RSC Adv. 2014, 4, 1469-1475. https://doi.org/10.1039/C3RA45354E
https://doi.org/10.1039/C3RA45354E
[23] De Chimie, R.R.; Bayrakçeken, F.; Anci, N.İ.Ş. Synthesis and Characterization of Graphene Oxide/Gold Nanoparticles/Dibenzothiophene Heterogeneous Nanostructures. Rev. Roum. Chim. 2020, 65, 777-782. https://doi.org/10.33224/rrch.2020.65.9.02
https://doi.org/10.33224/rrch.2020.65.9.02
[24] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169-176. https://doi.org/10.23939/chcht16.02.169
https://doi.org/10.23939/chcht16.02.169
[25] Sikandar, S.; Ahmad, I.; Ahmad, W. Adsorptive Desulphurization Study of Liquid Fuels Using Tin (Sn) Impregnated Activated Charcoal. J. Hazard. Mater. 2016, 304, 205-213. https://doi.org/10.1016/j.jhazmat.2015.10.046
https://doi.org/10.1016/j.jhazmat.2015.10.046
[26] Jaber, H.A.; Jabbar, M.F.A. Adsorption of Cationic and Anionic Dyes from Aqueous Solution Using Sunflower Husk. Chem. Chem. Technol. 2021, 15, 567-574. https://doi.org/10.23939/chcht15.04.567
https://doi.org/10.23939/chcht15.04.567
[27] Kadhum, A.T.; Albayati, T.M. Desulfurization of Real Diesel Fuel onto Mesoporous Silica MCM-41 Implementing Batch Adsorption Process : Equilibrium , Kinetics, and Thermodynamic Studies. Eng. Technol. J. 2022, 40, 1144-1157. https://doi.org/10.30684/etj.2022.132385.1110
https://doi.org/10.30684/etj.2022.132385.1110
[28] Deivasigamani, P.; Ponnusamy, S.K.; Sundararaman, S.; Suresh, A. Superhigh Adsorption of Cadmium (II) Ions onto Surface Modified Nano Zerovalent Iron Composite (CNS-NZVI): Characterization, Adsorption, Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
https://doi.org/10.23939/chcht15.04.457