Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Adsorption Desulfurization of Simulated Diesel Fuel Using Graphene Oxide

Qahtan A. Mahmood1, Jasim I. Humadi1, Rafi J. Algawi1, Amer T. Nawaf1, Ihab A. Ahmed2
Affiliation: 
1 Department of Petroleum and Gas Refining Engineering, College of Petroleum Processes Engineering, Tikrit University, Iraq 2 Tikrit University, College of Chemistry, North Refinery Company, Oil Ministry, Iraq jasim_alhashimi_ppe@tu.edu.iq
DOI: 
https://doi.org/10.23939/chcht18.03.436
AttachmentSize
PDF icon full_text.pdf878.06 KB
Abstract: 
Graphene oxide (GO) was synthesized from graphite powder by the improved Hammers method and used for the adsorption of organosulfur compound (dibenzothiophene, DBT) from model diesel fuel. FT-IR spectroscopy, X-ray diffraction, SEM, EDX, and BET were used to characterize the GO. Several factors, such as solution pH, initial DBT concentration, adsorption contact time, adsorption temperature, and adsorbent dosage were used to test the DBT removal efficiency. The results show that the maximum removal was 96.4% at pH = 5, initial solution concentration of 200 ppm, adsorption time of 45 min, temperature of 45C and adsorbent dosage of 0.4 g/25 mL.
References: 

[1] Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-Shahat, M.F. Oxidative Desulfurization Using Graphene and its Composites for Fuel Containing Thiophene and its Derivatives: An Update Review. Egypt. J. Pet. 2018, 27, 715–730. https://doi.org/10.1016/j.ejpe.2017.10.006
[2] Rajendran, A.; Cui, T.; Fan, H.; Yang, Z.; Feng, J.; Li, W. A Comprehensive Review on Oxidative Desulfurization Catalysts Targeting Clean Energy and Environment. J. Mater. Chem. A 2020, 8, 2246–2285. https://doi.org/10.1039/C9TA12555H
[3] Roman, F.F.; de Tuesta, J.L.D.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Carbon-Based Materials for Oxidative Desulfurization and Denitrogenation of Fuels: A Review. Catalysts 2021, 11, 1239. https://www.mdpi.com/2073-4344/11/10/1239
[4] Silva, D.F.; Viana, A.M.; Mirante, F.; de Castro, B.; Cunha-Silva, L.; Balula, S.S. Removing Simultaneously Sulfur and Nitrogen from Fuel under a Sustainable Oxidative Catalytic System. Sustain. Chem. 2021, 2, 382–391. https://doi.org/10.3390/suschem2020022
[5] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Nyakuma, B,B. Study on Chemistry of Oxidative Desulfurization Process of High Sulfur Straight-Run Oil Fraction. Chem. Chem. Technol. 2021, 15, 414–422. https://doi.org/10.23939/chcht15.03.414
[6] Pysh’yev, S. Application of Non-Catalytic Oxidative Desulfurization Process for Obtaining Diesel Fuels With Improved Lubricity. Chem. Chem. Technol. 2012, 6, 229–235. https://doi.org/10.23939/chcht06.02.229
[7] Mirshafiee, F.; Movahedirad, S.; Sobati, M.A.; Alaee, R.; Zarei, S.; Sargazi, H. Current Status and Future Prospects of Oxidative Desulfurization of Naphtha: A Review. Process Saf. Environ. Prot. 2023, 170, 54–75. https://doi.org/10.1016/j.psep.2022.11.080
[8] Ahmed, O.U.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I.M. Efficient Non-Catalytic Oxidative and Extractive Desulfurization of Liquid Fuels Using Ionic Liquids. RSC Adv. 2016, 6, 103606–103617. https://doi.org/10.1039/C6RA22032K
[9] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Vytrykush, N. Influence of Water on Noncatalytic Oxidative Desulfurization of High-Sulfur Straight-Run Oil Fractions. ACS Omega 2022, 7, 26495–26503. https://doi.org/10.1021/acsomega.2c02527
[10] Naife, T.M.; Finish, Q.G. Adsorption Desulfurization of Iraqi Light Naphtha Using Metals Modified Activated Carbon. Chem. Pet. Environ. Eng. 2021, 27, 24–41. https://doi.org/10.31026/j.eng.2021.07.03
[11] Joy, R.; Balakrishnan, N.T.M.; Das, A. Graphene: Chemistry and Applications for Lithium-Ion Batteries. Electrochem. 2022, 3, 143–183. https://doi.org/10.3390/electrochem3010010
[12] Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. Sensors 2022, 22, 355. https://doi.org/10.3390/s22010355
[13] Kubesa, O. Use of Graphene for Biosensors. Ph.D. Thesis, Masaryk University, 2017.
[14] Yu, H.; Zha, B.; Chaoke, B.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. https://doi.org/10.1038/srep36143
[15] Ridzuan, N.D.M.; Shaharun, M.S.; Lee, K.M.; Din, I.U., Puspitasari, P. Influence of Nickel Loading on Reduced Graphene Oxide-Based Nickel Catalysts for the Hydrogenation of Carbon Dioxide to Methane. Catalysts 2020, 10, 471. https://doi.org/10.3390/catal10050471
[16] Mahmudunnabi, D.M.; Alam, M.Z.; Nurnabi, M. Application of Graphene Oxide for the Removal of Textile Dye FD-R H / C from Aqueous Solution. J. Mater. Environ. Sci. 2020, 11, 531–539.
[17] Ahmad, W.; Rahman. A.U.; Ahmad. I. Oxidative Desulfurization of Petroleum Distillate Fractions Using Manganese Dioxide Supported on Magnetic Reduced Graphene Oxide as Catalyst. Nanomaterials 2021, 11, 203. https://doi.org/10.3390/nano11010203
[18] Lacina, K.; Kubesa, O.; Horáčková, V.; Moravec, Z.; Kuta, J.; Vanýsek, P.; Skládal, P. Graphene Oxide from Improved Hummers´ Method: Is This Material Suitable for Reproducible Electrochemical (Bio)Sensing. ECS J. Solid State Sci. Technol. 2018, 7, M166. https://doi.org/10.1149/2.0171810jss
[19] Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. https://doi.org/10.1016/j.nanoms.2019.02.004
[20] Otaghsaraei, S.S.; Kazemeini, M.; Hasannia, S.; Ekramipooya, A. Deep Oxidative Desulfurization via rGO-immobilized Tin Oxide Nanocatalyst: Experimental and Theoretical Perspectives. Adv. Powder Technol. 2022, 33, 103499. https://doi.org/10.1016/j.apt.2022.103499
[21] Hameed, T.; Jaafar, A. Ultra-sound Assisted Nano Y- zeolite / Mn Adsorbent to Removed Sulfur from Crude Oil. Turkish J. Comput. Math. Educ. 2021, 12, 5652–5657. https://turcomat.org/index.php/turkbilmat/article/view/2239/1958
[22] Chen, C.; Wang, G.; Yang, Y.; Liu, X. Efficient Adsorptive Removal of Dibenzothiophene by Graphene Oxide-Based Surface Molecularly Imprinted Polymer. RSC Adv. 2014, 4, 1469–1475. https://doi.org/10.1039/C3RA45354E
[23] De Chimie, R.R.; Bayrakçeken, F.; Anci, N.İ.Ş. Synthesis and Characterization of Graphene Oxide/Gold Nanoparticles/Dibenzothiophene Heterogeneous Nanostructures. Rev. Roum. Chim. 2020, 65, 777–782. https://doi.org/10.33224/rrch.2020.65.9.02
[24] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169–176. https://doi.org/10.23939/chcht16.02.169
[25] Sikandar, S.; Ahmad, I.; Ahmad, W. Adsorptive Desulphurization Study of Liquid Fuels Using Tin (Sn) Impregnated Activated Charcoal. J. Hazard. Mater. 2016, 304, 205–213. https://doi.org/10.1016/j.jhazmat.2015.10.046
[26] Jaber, H.A.; Jabbar, M.F.A. Adsorption of Cationic and Anionic Dyes from Aqueous Solution Using Sunflower Husk. Chem. Chem. Technol. 2021, 15, 567–574. https://doi.org/10.23939/chcht15.04.567
[27] Kadhum, A.T.; Albayati, T.M. Desulfurization of Real Diesel Fuel onto Mesoporous Silica MCM-41 Implementing Batch Adsorption Process : Equilibrium , Kinetics, and Thermodynamic Studies. Eng. Technol. J. 2022, 40, 1144–1157. https://doi.org/10.30684/etj.2022.132385.1110
[28] Deivasigamani, P.; Ponnusamy, S.K.; Sundararaman, S.; Suresh, A. Superhigh Adsorption of Cadmium (II) Ions onto Surface Modified Nano Zerovalent Iron Composite (CNS-NZVI): Characterization, Adsorption, Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457–464. https://doi.org/10.23939/chcht15.04.457