| Attachment | Size |
|---|---|
| 790.55 KB |
[1] Radzivill, A.Ya. Bure vuhillia. Encyclopedia of Modern Ukraine [Online], 2004. https://esu.com.ua/article-38047 (accessed 2024-12-20).
[2] Starzycka, A.; Kasiński, J.; Saternus, A., Urbański, P. Węgiel brunatny/lignite; Wydanie II, zaktualizowane; Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy: Warszawa, Poland, 2020.
[3] Marshak, S. Earth: Portrait of a Planet, 3rd ed.; W.W. Norton & Company, 2008.
[4] Cox, A.W. Solid fuels. In Information Sources in Energy Technology; Butterworth-Heinemann, 1988; pp 173−199.
[5] Grammelis, P.; Margaritis, N.; Karampinis, E. Solid fuel types for energy generation: Coal and fossil carbon-derivative solid fuels. In Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels, 1st Edition; Woodhead Publishing, 2016; pp 29−58. https://doi.org/10.1016/B978-1-78242-378-2.00002-X
[6] Pyshyev, S.; Gunka, V.; Bratychak, M.; Grytsenko, Y. Kinetic Regularities of High-Sulphuric Brown Coal Oxidative Desulphurization. Chem. Chem. Technol. 2011, 5, 107–113. https://doi.org/10.23939/chcht05.01.107
[7] Natsionalnyi hirnychyi universytet, Intekhproekt Ltd. Potencialnaya rol burogo uglya v energeticheskom balanse strany. DTEK, 2018. https://dtek.com/content/files/boris-sobko.pdf (accessed 2024-11-06).
[8] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Yu. Deposits and quality indicators of brown coal in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 3, 5–10. https://doi.org/10.33271/nvngu/2022-3/005
[9] Diuzhev, V.; Sinitsyna, A.; Karnozhytskyi, P.P.; Karnozhytskyi, P.V. Sotsialno-ekonomichni, ekolohichni problemy zbilshennia standartiv zhyttiediialnosti naselennia iz zastosuvanniam innovatsiinykh tekhnolohii ochyshchennia vodnykh resursiv na osnovi vodorozchynnykh sorbentiv otrymanykh z ukrainskoho buroho vuhillia. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" (ekonomichni nauky) 2022, 4, 88–92. https://doi.org/10.20998/2519-4461.2022.4.88
[10] Kulish, V.A. Dobycha burogo uglya v Dneprovskom basseine. Ugol Ukrainy [Online] 2015, 6, 17–22. http://nbuv.gov.ua/UJRN/ugukr_2015_6_5 (accessed Dec 18, 2024).
[11] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
[12] Sinitsyna, A.; Karnozhitskiy, P.; Miroshnichenko, D.; Bilets, D. The Use of Brown Coal in Ukraine to Obtain Water-Soluble Sorbents. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 4, 5–10 https://doi.org/10.33271/nvngu/2022-4/005
[13] Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Miroshnychenko, M.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. ChemEngineering 2024, 8, 27. https://doi.org/10.3390/chemengineering8020027
[14] Shustov, O.; Bielov, O.P.; Perkova, T.I.; Adamchuk, A. Substantiation of the Ways to Use Lignite Concerning the Integrated Development of Lignite Deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 3, 5–13. https://doi.org/10.29202/nvngu/2018-3/6
[15] The European Parliament, the Council of the European Union. Directive (EU) 2019/944 on common rules for the internal market for electricity and amending Directive 2012/27/EU (recast). Official Journal of the European Union, 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF (accessed 2024-12-25).
[16] Prysiazhny, Y.; Pyshyev, S.; Shved, M.; Pochapska, I.; Niavkevych, M. Plasticizing Additive to Road Bitumens Based on High-Sulfur Brown Coal. Chem. Chem. Technol. 2024, 18, 623–629. https://doi.org/10.23939/chcht18.04.623
[17] Pleten, V.V. Humaty – novyi metod u rehuliuvanni produktyvnosti. Naukovi zapysky. Kropyvnytskyi: TsNTU 2018, 23, 164–168.
[18] Gong, G.; Xu, L.; Zhang, Y.; Liu, W.; Wang, M.; Zhao, Y.; Yuan, X.; Li, Y. Extraction of Fulvic Acid from Lignite and Characterization of Its Functional Groups. ACS Omega 2020, 5, 27953–27961. https://doi.org/10.1021/acsomega.0c03388
[19] Gong, Q.; Wang, L.; Tang, K.; Han, Sh.; Wu, G.; Hu, Z. Preparing Potassium Fulvic Acid Based on Lignite from Different Regions of China. J. Phys.: Conf. Ser. [Online] 2022, 2393, 012009. https://iopscience.iop.org/article/10.1088/1742-6596/2393/1/012009 (accessed Dec 30, 2024).
[20] Karnozhytskyi, P.P. Perspektyvy neenehretychnoho vykorystannia buroho vuhillia Dniprovskoho baseinu, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dop. 7-yi Mizhnar. nauk.-tekhn. konf., NTU “KhPI”, Kharkiv, Ukraine, April 17-18, 2024.
[21] Tipping, E. Cation Binding by Humic Substances; Cambridge University Press, 2005.
[22] Aiken, G.R.; McKnight, D.M.; Wershaw, R.L.; MacCarthy, P. Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization; A Wiley-Interscience Publication, 1985.
[23] Mahler, C.F.; Svierzoski, N.D.S.; Bernardino, C.A. Chemical Characteristics of Humic Substances in Nature. In Humic Substances; IntechOpen, 2021; pp 139−153. https://doi.org/10.1093/acprof:oso/9780198738671.003.0004
[24] Trevisan S.; Francioso O.; Quaggiotti S.; Nardi S. Humic Substances Biological Activity at the Plant-Soil Interface: From Environmental Aspects to Molecular Factors. Plant Signaling Behav. 2010, 5, 635–643. https://doi.org/10.4161/psb.5.6.11211
[25] Zhao, H.; Zhou, F.; Bao, X.; Zhou, S.; Wei, Zh.; Long, W.; Yi, Zh. A Review on the Humic Substances in Pelletizing Binders: Preparation, Interaction Mechanism, and Process Characteristics. ISIJ International 2023, 63, 205–215. https://doi.org/10.2355/isijinternational.ISIJINT-2022-306
[26] Alomar, T.; Qiblawey, H.; Almomani, F; Al-Raoush, R.I.; Han, D.S.; Ahmad, N.M. Recent Advances on Humic Acid Removal from Wastewater Using Adsorption Process. J. Water Process Eng. 2023, 53, 103679. https://doi.org/10.1016/j.jwpe.2023.103679
[27] Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Sherelkhan, D.K.; Jussupova, D.B.; Altynbay, N.P. Low-Rank Coal as a Source of Humic Substances for Soil Amendment and Fertility Management. Agriculture [Online] 2021, 11, 1261. https://www.mdpi.com/2077-0472/11/12/1261 (accessed Dec 28, 2024).
[28] Sarlaki, E.; Paghaleh, A.S.; Kianmehr, M.H.; Vakilian, K.A. Valorization of Lignite Wastes into Humic Acids: Process Optimization, Energy Efficiency and Structural Features Analysis. Renew. Energy 2020, 163, 105–122. https://doi.org/10.1016/j.renene.2020.08.096
[29] Wang, M.; Liao, L.; Zhang, X.; Li, Zh. Adsorption of Low Concentration Humic Acid from Water by Palygorskite. Appl. Clay Sci. 2012, 67-68, 164–168. https://doi.org/10.1016/j.clay.2011.09.012
[30] Lysenko, L.A.; Miroshnychenko, D.V.; Bohoiavlenska, O.V. Huminovi rechovyny: otrymannya, vykorystannya, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dop. 6-yi Mizhnar. nauk.-tekhn. konf., NTU “KhPI”, Kharkiv, Ukraine, April 11-12, 2023.
[31] Karnozhytskyi, P.P. Zabrudnennia gruntovoho pokryvu ta yoho vidnovlennia za shliakhom sumisnoho zastosuvannia HK ta zakhodiv z fito rekultyvatsii, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dop. 6-yi Mizhnar. nauk.-tekhn. konf., NTU “KhPI”, Kharkiv, Ukraine, April 11-12, 2023.
[32] Sinitsyna, A.O.; Karnozhytskyi P.P. Bure vuhillia – syrovyna dlia otrymannia vodorozchynnykh sorbentiv. Intehrovani tekhnolohii ta enerhozberezhennia 2023, 3, 67–77. https://doi.org/10.20998/2078-5364.2023.3.06
[33] Sinitsyna, A. O.; Karnozhytskyi, P.V. Oleksandriiske bure vuhillia yak dzherelo huminovykh rechovyn, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dop. 5-yi Mizhnar. nauk.-tekhn. konf., NTU “KhPI”, Kharkiv, Ukraine, April 14-15, 2022.
[34] Zhylina, M.; Karnozhytskyi, P.P.; Miroshnichenko, D.; Konohrai, V.; Sterna, V.; Ozolins, J. The Effect of Growth Stimulants Based on Humic Acids from Ukrainian Lignite and Biochar from Agricultural Residues on the Growth and Development of Lettuce (Lactuca sativa). Agron. Res. [Online early access] 2025, 23, 571–584. https://doi.org/10.15159/ar.25.013 (accessed Apr 15, 2025).
[35] Symanowicz, B.; Toczko, R. Brown Coal Waste in Agriculture and Environmental Protection: A Review. Sustainability 2022, 15, 13371. https://doi.org/10.3390/su151813371
[36] Haider, R.; Ghauri, M.A.; Akhtar, K. Isolation of Coal Degrading Fungus from Drilled Core Coal Sample and Effect of Prior Fungal Pretreatment on Chemical Attributes of Extracted Humic Acid. Geomicrobiol. J. 2021, 32, 944–953. https://doi.org/10.1080/01490451.2015.1039673
[37] Fatima, N.; Jamal, A.; Huang, Z.; Liaquat, R.; Ahmad, B.; Haider, R.; Ali, M.I.; Shoukat, T.; Alothman, Z.A.; Ouladsmane, M. et al. Extraction and Chemical Characterization of Humic Acid from Nitric Acid Treated Lignite and Bituminous Coal Samples. Sustainability [Online] 2021, 13, 8969. https://doi.org/10.3390/su13168969 (accessed Jan 20, 2025).
[38] Cheng, G.; Niu, Z.; Zhang, C.; Zhang, X.; Li, X. Extraction of Humic Acid from Lignite by KOH-Hydrothermal Method. Appl. Sci. 2019, 9, 1356. https://doi.org/10.3390/app9071356
[39] Aftab, K.; Javed, J.; Siddiqua, U.H.; Malik, A.; Hassan, A.; Khan, M.R.; Busquets, R.; Ahmad, N.; Haque, A. Process Optimization and Method Validation for Efficient Valorization of Low- Grade Coal into Humic Substances. Fuel 2024, 369, 131796. https://doi.org/10.1016/j.fuel.2024.131796
[40] Tang, Y.; Yang, Y.; Hou, S.; Cheng, D.; Yao, Y.; Zhang, S.; Xie, J.; Wang, X.; Ma, X.; Yu, Z.; Li, S. Multifunctional Iron–Humic Acid Fertilizer from Ball Milling Double-Shelled Fe–N-doped Hollow Mesoporous Carbon Microspheres with Lignite. ACS Sustain. Chem. Eng. 2021, 9, 717–731. https://doi.org/10.1021/acssuschemeng.0c06406
[41] Sun, Q.; Xu, C.; Geng, Z.; She, D. Extraction and Characterization of Humic Acid with High Bio-Activity by Mechanical Catalytic Treatment. Ind. Crops Prod. [Online] 2023, 206, 117623. https://www.sciencedirect.com/science/article/abs/pii/S0926669023013882 (accessed Jan 2, 2025).
[42] Skybová, M.; Turčániová, Ľ.; Čuvanová, S.; Zubrik, A.; Hredzák, S.; Hudymáčová, Ľ. Mechanochemical Activation of Humic Acids in the Brown Coal. J. Alloys Compd. 2007, 434-435, 842–845. https://doi.org/10.1016/j.jallcom.2006.08.310
[43] Desikan, R.; Thangavelu, K.; Uthandi, S. Hydrodynamic Cavitation – A Promising Technology for Biomass Pretreatment. J. Environ. Sci. Nat. Resour. [Online] 2019, 19, 556015 https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.556015.php (accessed Jan 10, 2025).
[44] Bis, M.; Montusiewicz, A.; Ozonek, J., Pasieczna-Patkowska, S. Application of Hydrodynamic Cavitation to Improve the Biodegradability of Mature Landfill Leachate. Ultrason. Sonochem. 2015, 26, 378–387. https://doi.org/10.1016/j.ultsonch.2015.03.003
[45] Lebiocka, M. Application of Hydrodynamic Cavitation to Improve the Biodegradability of Municipal Wastewater. J. Ecol. Eng. [Online] 2020, 21, 155–160. https://doi.org/10.12911/22998993/123163 (accessed Jan 29, 2025).
[46] Han, H.; Liu, A.; Wang, H. Effect of Hydrodynamic Cavitation Assistance on Different Stages of Coal Flotation. Minerals [Online] 2020, 10, 221. https://www.mdpi.com/2075-163X/10/3/221 (accessed Dec 31, 2024).
[47] Nedbailo, A.; Ivanytsky, G.; Tselen, B.Y.; Radchenko, N.; Gozhenko, L.; Shchepkin, V. Application of a Pulsating Dispersor as a Hydrodynamic Cavitation Reactor for Preparation of Coal Water Fuel. Thermophysics and Thermal Power Engineering [Online] 2023, 45, 28–34. https://doi.org/10.31472/ttpe.1.2023.4 (accessed Dec 6, 2018).
[48] Kravchenko, O.; Miroshnychenko, D.; Karnozhytskyi, P.P; Homan, V.; Karnozhytskyi, P.V. Intensifying the Process of Extraction of Humic Acids from Brown Coal by Using the Hydrocavitation Activation Methodology. Int. J. Energy Clean Environ. 2025, 26, 61–75. https://doi.org/10.1615/InterJEnerCleanEnv.2024053521
[49] Karnozhytskyi, P.P.; Karnozhytskyi, P.V.; Zhylina, M. Rozrobka malovidkhodnoi tekhnolohii pererobky buroho vuhillia, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dop. 7-yi Mizhnar. nauk.-tekhn. konf., NTU “KhPI”, Kharkiv, Ukraine, April 17-18, 2024.
[50] Melnikov, A.; Miroshnychenko, D.; Karnozhytskyi, P.P.; Karnozhytskyi, P.V. Sorption Properties of Brown Coal Processing Products. Chem. Chem. Technol. 2024, 18, 493–501. https://doi.org/10.23939/chcht18.04.493
[51] Kravchenko, O.; Suvorova, I.; Baranov, I.; Goman, V. Hydrocavitational Activation in the Technologies of Production and Combustion of Composite Fuels. East.-Eur. J. Enterp. Technol. 2017, 4(5(88)), 33–42. https://doi.org/10.15587/1729-4061.2017.108805
[52] Suvorova, I.; Kravchenko, O.; Goman, V.; Baranov, I. Criteria for Assessing the Energy-Ecological Effectiveness of using the Sludge of Waste Treatment Plants as Components of Liquid Composite Fuels. Eur. J. Sustain. Dev. 2020, 9, 328–336. https://doi.org/10.14207/ejsd.2020.v9n4p328
[53] Anshariah, H.; Imran, A.M.; Widodo, S.; Irfan, U.R. Correlation of Fixed Carbon Content and Calorific Value of South Sulawesi Coal, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 2020, 473, 012106. https://doi.org/10.1088/1755-1315/473/1/012106