Analysis and Selection of Composite Raw Materials for Carbon Black Production

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Dmytro Sheremeta1, Vasyl Bohun1, Kateryna Roienko1, Oleh Tertyshnyi2, Yukhym Roienko3, Olena Tertyshna1
Affiliation: 
1 Ukrainian State University of Science and Technology (ESI «Ukrainian State University of Chemical Technology»), 8 Avenue of Science, Dnipro 49005, Ukraine 2 Dnipro State Agrarian and Economic University, 25 Serhii Efremov St., Dnipro 49009, Ukraine 3 Dniprovsky State Technical University, 2 Dniprobudivska St., Kamianske 51918, Dnipropetrovsk region, Ukraine elenateert@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.03.564
AttachmentSize
PDF icon full_text.pdf914.91 KB
Abstract: 
The availability and possibility of using various alternative types of raw materials for carbon black production have been analyzed. The quality of raw materials was evaluated according to the aromaticity value, correlation index, carbon content, and hydrogen content. Composite mixtures were created and tested under industrial conditions. Two programs for calculating the theoretical yield of carbon black by balance and thermochemical methods have been developed and tested. An evaluation of the carbon black cost was carried out under the conditions of using the residue of tire processing - pyrolysis oil - as a fuel.
References: 

[1] Ge-Zhang, S.; Yang, H.; Mu, H. Interfacial Solar Steam Generator by MWCNTs/Carbon Black Nanoparticles Coated Wood. Alexandria Eng. J. 2023, 63, 1-10. https://doi.org/10.1016/j.aej.2022.08.002
https://doi.org/10.1016/j.aej.2022.08.002

[2] George, J.; Poulose, A.M.; Chandran, A.; Somashekar, A.A. Influence of Plasticizer on the Dielectric Properties of Polypropylene/Carbon Black Composites. Mater. Today Proc. 2023, 113391. https://doi.org/10.1016/j.matpr.2023.03.297
https://doi.org/10.1016/j.matpr.2023.03.297

[3] Vélez, P.; Luque, G.L.; Barraco, D.E.; Franco, A.A.; Leiva, Е.P.M. Pore Size Distribution of Carbon Black: An Approach from a Coarse-Grained Potential. Comput. Mater. Sci 2022, 209,111409. https://doi.org/10.1016/j.commatsci.2022.111409
https://doi.org/10.1016/j.commatsci.2022.111409

[4] Zhang, G.; Jiang, Y.; Wang, S.; Zhang, Y. Influence of a Novel Coupling Agent on the Performance of Recovered Carbon Black Filled Natural Rubber. Composites, Part B 2023, 255, 110614. https://doi.org/10.1016/j.compositesb.2023.110614
https://doi.org/10.1016/j.compositesb.2023.110614

[5] Kouchachvili, L.; Hataley, B.; Geddis, P.; Chen, S.; McCready, A.; Zhuang, Q.; Clements, B.; Entchev, Е. Modification of Carbon Black Fuel to Improve the Performance of a Direct Carbon Fuel Cell. Int. J. Hydrogen Energy 2023, 52, 1153-1160. https://doi.org/10.1016/j.ijhydene.2023.01.074
https://doi.org/10.1016/j.ijhydene.2023.01.074

[6] Tuul, K.; Palm, R.; Aruväli, J.; Lust, E. Dehydrogenation and Low-Pressure Hydrogenation Properties of NaAlH4 Confined in Mesoporous Carbon Black for Hydrogen Storage. Int. J. Hydrogen Energy 2023, 48, 19646-19656. https://doi.org/10.1016/j.ijhydene.2023.01.358
https://doi.org/10.1016/j.ijhydene.2023.01.358

[7] Choi, G.B.; Kim, Y-A.; Hong, D.; Choi, Y.; Yeon, S-H.; Park, Y-K.; Lee, G-G.; Lee, H.; Jung, S-C. Carbon Black Produced by Plasma in Benzene Solution Applied as the Conductive Agent in Lithium Secondary Batteries. Carbon 2023, 205, 444-453. https://doi.org/10.1016/j.carbon.2023.01.042
https://doi.org/10.1016/j.carbon.2023.01.042

[8] Ferreira, M.C.; Silva, L.S.; Bergamini, M.F.; Richter, E.M.; Muñoz, R.A.A. Using Nanostructured Carbon Black-Based Electrochemical (bio)Sensors for Pharmaceutical and Biomedical Analyses: A Comprehensive Review. J. Pharm. Biomed. Anal. 2023, 221, 115032. https://doi.org/10.1016/j.jpba.2022.115032
https://doi.org/10.1016/j.jpba.2022.115032

[9] Sun, P.; Wang. X.; Zhang. Y.; Chen. Y. Rational Construction of Hierarchical Nanocomposites by Growing Dense Polyaniline Nanoarrays on Carbon Black-Functionalized Carbon Nanofiber Backbone for Freestanding Supercapacitor Electrodes. J. Energy Storage 2023, 61, 106738. https://doi.org/10.1016/j.est.2023.106738
https://doi.org/10.1016/j.est.2023.106738

[10] Chiba, S.; Waki, M. Verification of the Radio Wave Absorption Effect in the Millimeter Wave Band of SWCNTs and Conventional Carbon-Based Materials. Appl. Sci. 2021, 11, 11490. https://doi.org/10.3390/app112311490
https://doi.org/10.3390/app112311490

[11] Ruiz-Pereza, F.; Lopez-Estradab, S.M.; Tolentino-Hernandeza, R.V.; Caballero-Briones, F. Carbon-Based Radar Absorbing Materials: A Critical Review. J. Sci.: Adv. Mater. Devices 2022, 7, 100454. https://doi.org/10.1016/j.jsamd.2022.100454
https://doi.org/10.1016/j.jsamd.2022.100454

[12] Elmaghraby, N.A.; Hassaan, M.A.; Zien, M.A.; Abedelrhim, E.M.; Ragab, S.; Yılmaz, M.; El Nemr, A. Fabrication Of Carbon Black Nanoparticles from Green Algae and Sugarcane Bagasse. Sci. Rep. 2024, 14, 5542. https://doi.org/10.1038/s41598-024-56157-4
https://doi.org/10.1038/s41598-024-56157-4

[13] Shoaib, A.G.M.; El-Sikaily, A.; El Nemr, A.; Mohamed, A.A.; Hassan, A.A. Preparation and Characterization of Highly Surface Area Activated Carbons Followed Type IV from Marine Red Alga (Pterocladia capillacea) by Zinc Chloride Activation. Biomass Conv. Bioref. 2022, 12, 2253-2265. https://doi.org/10.1007/s13399-020-00760-8
https://doi.org/10.1007/s13399-020-00760-8

[14] El Nemr, A.; Shoaib, A.G.M.; El Sikaily, A.; Ragab, S.; El-Deen Mohamed, A.; Hassan, A. Utilization of Green Alga Ulva lactuca for Sustainable Production of Meso-Micro Porous Nano Activated Carbon for Adsorption of Direct Red 23 Dye from Aquatic Environment. Carbon Lett. 2022, 32, 153-168. https://doi.org/10.1007/s42823-021-00262-1
https://doi.org/10.1007/s42823-021-00262-1

[15] Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M.A. High Yield and Simple One-Step Production of Carbon Black Nanoparticles from Waste Tires. Heliyon 2019, 5, е02139. https://doi.org/10.1016/j.heliyon.2019.e02139
https://doi.org/10.1016/j.heliyon.2019.e02139

[16] Yerdauletov, M.S.; Nazarov, K.; Mukhametuly, B.; Yeleuov, M.A.; Daulbayev, C.; Abdulkarimova, R.; Yskakov, A.; Napolskiy, F.; Krivchenko, V. Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices. Molecules 2023, 28, 5818. https://doi.org/10.3390/molecules28155818
https://doi.org/10.3390/molecules28155818

[17] Nadimpalli, N.K.V.; Buddhiraju, V.S.; Runkana, V. Modeling and Simulation of Carbon Black Synthesis in an Aerosol Flame Reactor. Adv. Powder Technol. 2011, 22, 141-149. https://doi.org/10.1016/j.apt.2010.12.015
https://doi.org/10.1016/j.apt.2010.12.015

[18] El Nemr, A.; Aboughaly, R.M.; El Sikaily, A.; Masoud, M.S.; Ramadan, M.S.; Ragab, S. Microporous Nano-Activated Carbon Type I Derived from Orange Peel and its Application for Cr (VI) Removal from Aquatic Environment. Biomass Convers. Biorefin. 2022, 12, 5125-5143. https://doi.org/10.1007/s13399-020-00995-5
https://doi.org/10.1007/s13399-020-00995-5

[19] Kong, D.; Wang, S.; Shan, R.; Gu, J.; Yuan, H.; Chen, Y. Characteristics and Chemical Treatment of Carbon Black from Waste Tires Pyrolysis. J. Anal. Appl. Pyrolysis 2024, 178, 106419. https://doi.org/10.1016/j.jaap.2024.106419
https://doi.org/10.1016/j.jaap.2024.106419

[20] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Demchuk, Y.; Kukhar, O.; Korchak, B; Pochapska, I.; Zhytnetsky, I. Characteristics and Applications of Waste Tire Pyrolysis Products: a Review. Chem. Chem. Technol. 2024, 2, 244-257. https://doi.org/10.23939/chcht18.02.244
https://doi.org/10.23939/chcht18.02.244

[21] Zamikula, K.; Tertyshna, O.; Tertyshny, O.; Topilnytskyy, P. Simulation of Change in Density and Viscosity of Crude Oil When Mixing. Chem. Chem. Technol. 2022, 3, 469-474. https://doi.org/10.23939/chcht16.03.469
https://doi.org/10.23939/chcht16.03.469

[22] Tertyshna, O.; Royenko, K.; Martynenko, V.; Smesova, V.A.; Gyrenko, V.; Topilnytskyy, P. The Utilization of Asphalt-Resin-Paraffin Deposits as a Component of Raw Material for Visbreaking. Chem. Chem. Technol. 2016, 10, 361-366. https://doi.org/10.23939/chcht10.03.361
https://doi.org/10.23939/chcht10.03.361