Attachment | Size |
---|---|
![]() | 428.68 KB |
[1] Alkan, B.; Daglar, O.; Luleburgaz, S.; Gungor, B.; Gunay, U.S.; Hizal, G.; Tunca, U.; Durmaz, H. One-Pot Cascade Polycondensation and Passerini Three-Component Reactions for the Synthesis of Functional Polyesters. Polym. Chem. 2022, 13, 258-266. https://doi.org/10.1039/D1PY01528A
https://doi.org/10.1039/D1PY01528A
[2] Koziel, K.; Lagiewka, J.; Girek, B.; Folentarska, A.; Girek, T.; Ciesielski, W. Synthesis of New Amino-β-Cyclodextrin Polymer, Cross-Linked with Pyromellitic Dianhydride and Their Use for the Synthesis of Polymeric Cyclodextrin Based Nanoparticles. Polymers 2021, 13, 1332. https://doi.org/10.3390/polym13081332
https://doi.org/10.3390/polym13081332
[3] Afinjuomo, F.; Barclay, T.; Song, Y.; Parikh, A.; Petrovsky, N.; Garg, S. Synthesis and Characterization of a Novel Inulin Hydrogel Crosslinked with Pyromellitic Dianhydride. React. Funct. Polym. 2019, 134, 104-111. https://doi.org/10.1016/j.reactfunctpolym.2018.10.014
https://doi.org/10.1016/j.reactfunctpolym.2018.10.014
[4] Arkas, M.; Vardavoulias, M.; Kythreoti, G.; Giannakoudakis, D.A. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023, 15, 524. https://doi.org/10.3390/pharmaceutics15020524
https://doi.org/10.3390/pharmaceutics15020524
[5] Polotti, G. Perspectives from Industry. Adv. Chem. Eng. 2020, 56, 259-330. https://doi.org/10.1016/bs.ache.2020.07.003
https://doi.org/10.1016/bs.ache.2020.07.003
[6] Ciesielska, A.; Ciesielski, W.; Girek, B.; Girek, T.; Koziel, K.; Kulawik, D.; Lagiewka, J. Biomedical Application of Cyclodextrin Polymers Cross-Linked via Dianhydrides of Carboxylic Acids. Appl. Sci. 2020, 10, 8463. https://doi.org/10.3390/app10238463
https://doi.org/10.3390/app10238463
[7] Peimanfard, S.; Zarrabi, A.; Trotta, F.; Matencio, A.; Cecone, C.; Caldera, F. Developing Novel Hydroxypropyl-β-Cyclodextrin-Based Nanosponges as Carriers for Anticancer Hydrophobic Agents: Overcoming Limitations of Host-Guest Complexes in a Comparative Evaluation Pharmaceutics 2022, 14, 1059. https://doi.org/10.3390/pharmaceutics14051059
https://doi.org/10.3390/pharmaceutics14051059
[8] Monfared, Y.K.; Mahmoudian M.; Cecone, C.; Caldera, F.; Zakeri-Milani, P.; Matencio, A.; Trotta, F. Stabilization and Anticancer Enhancing Activity of the Peptide Nisin by Cyclodextrin-Based Nanosponges against Colon and Breast Cancer Cells. Polymers 2022, 14, 594. https://doi.org/10.3390/polym14030594
https://doi.org/10.3390/polym14030594
[9] Girek, T.; Koziel, K.; Girek, B.; Ciesielski, W. CD Oxyanions as a Tool for Synthesis of Highly Anionic Cyclodextrin Polymers. Polymers 2020, 12, 2845. https://doi.org/10.3390/polym12122845
https://doi.org/10.3390/polym12122845
[10] Demasi, S.; Caser, M.; Caldera, F.; Dhakar, N.K.; Vidotto, F.; Trotta, F.; Scariot, V. Functionalized Dextrin-Based Nanosponges as Effective Carriers for the Herbicide Ailanthone. Ind. Crops Prod. 2021, 164, 113346. https://doi.org/10.1016/j.indcrop.2021.113346
https://doi.org/10.1016/j.indcrop.2021.113346
[11] Qi, H.; Meng, L.; Lin, X.; Xu, W.; Chen, Y.; Zhang, C.; Qiu, Y. Anti-Wrinkle Finishing of Cotton Fabrics with Pyromellitic Acid Enhanced by Polyol Extenders. J. Donghua Univ. (Engl. Ed.) 2022, 39, 533-541. https://doi.org/10.19884/j.1672-5220.202209006
[12] Tarnavchyk, I.; Voronov, A.; Donchak, V.; Budishevska, O.; Kudina, O.; Khomenko, O.; Harhay, K.; Samaryk, V.; Voronov, S. Synthesis and Selfassambling of Amphiphilic Oligoesters Based on Pyromellitic Acid. Chem. Chem. Technol. 2016, 10, 159-172. https://doi.org/10.23939/chcht10.02.159
https://doi.org/10.23939/chcht10.02.159
[13] Müller, R.H. Colloidal Carriers for Controlled Drug delivery and Targeting: Modification, Characterization and in Vivo Distribution; CRC Press, 1991.
[14] Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in Anti-Cancer Therapy: An Overview. Asian J. Pharm. Sci. 2016, 11, 337-348. https://doi.org/10.1016/j.ajps.2015.08.011
https://doi.org/10.1016/j.ajps.2015.08.011
[15] Kudina, О.; Tarnavchyk, I.; Khomenko, О.; Budishevska, O.; Voronov, S.; Voronov, A. PEG and Cholesterol-Containing Pyromellitates: Synthesis and Self-Assembly. Macromol. Chem. Phys. 2013, 214, 2761-2767. https://doi.org/10.1002/macp.201300488
https://doi.org/10.1002/macp.201300488
[16] Klok, H.-A.; Hwang, J.J.; Iyer, S.N.; Stupp, S.I. Cholesteryl-(L-Lactic Acid)n̄ Building Blocks for Self-Assembling Biomaterials. Macromolecules 2002, 35, 746-759. https://doi.org/10.1021/ma010907x
https://doi.org/10.1021/ma010907x
[17] Heino, S.; Lusa, S.; Somerharju, P.; Ehnholm, C.; Olkkonen, V.M.; Ikonen, E. Dissecting the Role of the Golgi Complex and Lipid Rafts in Biosynthetic Transport of Cholesterol to the Cell Surface. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8375-8380. https://doi.org/10.1073/pnas.140218797
https://doi.org/10.1073/pnas.140218797
[18] Klausen, T.K.; Hougaard, C.; Hoffmann, E.K.; Pedersen, S.F. Cholesterol Modulates the Molume-Regulated Anion Current in Ehrlich-Lettre Ascites Cells via Effects on Rho and F-Actin. Am. J. Physiol. Cell Physiol. 2006, 291, C757-C771. https://doi.org/10.1152/ajpcell.00029.2006
https://doi.org/10.1152/ajpcell.00029.2006
[19] Levitan, I.; Christian, A.E.; Tulenko, T.N.; Rothblat, G.H. Membrane Cholesterol Content Modulates Activation of Volume-Regulated Anion Current in Bovine Endothelial Cells. J. Gen. Physiol. 2000, 115, 405-416. https://doi.org/10.1085/jgp.115.4.405
https://doi.org/10.1085/jgp.115.4.405
[20] Maxfield, F.R.; Tabas, I. Role of Cholesterol and Lipid Organization in Disease. Nature 2005, 438, 612-621. https://doi.org/10.1038/nature04399
https://doi.org/10.1038/nature04399
[21] Yusa, S. Self-Assembly of Cholesterol-Containing Water-Soluble Polymers. Int. J. Polym. Sci. 2012, 609767. https://doi.org/10.1155/2012/609767
https://doi.org/10.1155/2012/609767
[22] Ringsdorf, H.; Schlarb, B.; Venzmer, J. Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes. Angew. Chem. Int. Ed. 1988, 27, 113-158. https://doi.org/10.1002/anie.198801131
https://doi.org/10.1002/anie.198801131
[23] Zhou, Y.; Briand, V.A.; Sharma, N.; Ahn, S.; Kasi, R.M. Polymers Comprising Cholesterol: Synthesis, Self-Assembly, and Applications. Materials 2009, 2, 636-660. https://doi.org/10.3390/ma2020636
https://doi.org/10.3390/ma2020636
[24] Shibaev, V.P.; Platé, N.A.; Freidzon, Ya.S. Thermotropic Liquid Crystalline Polymers. I. Cholesterol-Containing Polymers and Copolymers. J. Polym. Sci. Pol. Chem. 1979, 17, 1655-1670. https://doi.org/10.1002/pol.1979.170170609
https://doi.org/10.1002/pol.1979.170170609
[25] Shibaev, V.P.; Tal'roze, R.V.; Karakhanova, F.I.; Platé, N.A. Thermotropic Liquid Crystalline Polymers. II. Polymers with Amino Acid Fragments in the Side Chains. J. Polym. Sci. Pol. Chem. 1979, 17, 1671-1684. https://doi.org/10.1002/pol.1979.170170610
https://doi.org/10.1002/pol.1979.170170610
[26] Yamaguchi, T.; Asada, T.; Hayashi, H.; Nakamura, N. Dependence of the Packing Structure of Mesogenic Groups on the Flexible Spacer Length of Liquid-Crystalline Side-Chain Polymers. Macromolecules 1989, 22, 1141-1144. https://doi.org/10.1021/ma00193a024
https://doi.org/10.1021/ma00193a024
[27] Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288-6308. https://doi.org/10.1002/anie.200902672
https://doi.org/10.1002/anie.200902672
[28] Menger, F.M.; Littau, C.A. Gemini Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113, 1451-1452. https://doi.org/10.1021/ja00004a077
https://doi.org/10.1021/ja00004a077
[29] Menger, F.; Littau, C. Gemini Surfactants: A New Class of Self-Assembling Molecules. J. Am. Chem. Soc. 1993, 115, 10083-10090. https://doi.org/10.1021/ja00075a025
https://doi.org/10.1021/ja00075a025
[30] Zana, R.; Xia, J. Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications; Marcel Dekker, 2004.
[31] Sakai, K. Development of Commercially Available Gemini Surfactants. J. Oleo Sci. 2012, 12, 627-633. https://doi.org/10.5650/oleoscience.12.627
https://doi.org/10.5650/oleoscience.12.627
[32] Rosen, M.J. Geminis: A New Generation of Surfactants. Chemtech 1993, 23, 30-33.
[33] Villa, C.; Baldassari, S.; Martino, D.F.C.; Spinella, A.; Caponetti, E. Green Synthesis, Molecular Characterization and Associative Behavior of Some Gemini Surfactants without a Spacer Group. Materials 2013, 6, 1506-1519. https://doi.org/10.3390/ma6041506
https://doi.org/10.3390/ma6041506
[34] Zana, R. Gemini (Dimeric) Surfactants. Curr. Opin. Colloid Interface Sci. 1996, 1, 566-571. https://doi.org/10.1016/S1359-0294(96)80093-8
https://doi.org/10.1016/S1359-0294(96)80093-8
[35] Brycki, B.E.; Kowalczyk, I.H; Szulc, A.; Kaczerewska, O.; Pakiet, M. Multifunctional Gemini Surfactants: Structure, Synthesis, Properties, and Applications. In Application and Characterization of Surfactants; Intech World's Largest Science, Technology & Medicine Open Access Book Publisher, 2017.
https://doi.org/10.5772/intechopen.68755
[36] Song, B.; Hu, Y.; Song, Y.; Zhao, J. Alkyl Chain Length-Dependent Viscoelastic Properties in Aqueous Wormlike Micellar Solutions of Anionic Gemini Surfactants with an Azobenzene Spacer. J. Colloid Interface Sci. 2010, 341, 94-100. https://doi.org/10.1016/j.jcis.2009.09.023
https://doi.org/10.1016/j.jcis.2009.09.023
[37] Ahmady, A. R.; Hosseinzadeh, P.; Solouk, A.; Akbari, S.; Szulc, A.M.; Brycki, B.E. Cationic Gemini Surfactant Properties, Its Potential as a Promising Bioapplication Candidate, and Strategies for Improving Its Biocompatibility: A Review. Adv. Colloid Interface Sci. 2022, 299, 102581. https://doi.org/10.1016/j.cis.2021.102581
https://doi.org/10.1016/j.cis.2021.102581
[38] Pei, X.; Zhao, J.; Ye, Y.; You, Y; Wei, X. Wormlike Micelles and Gels Reinforced by Hydrogen Bonding in Aqueous Cationic Gemini Surfactant Systems. Soft Matter 2011, 7, 2953-2960. https://doi.org/10.1039/C0SM01071E
https://doi.org/10.1039/c0sm01071e
[39] Degiorgio, V.; Corti, M. Physics of Amphiphiles: Micelles, Vesicles and Microemulsion; North Holland Physics Publishing, 1985.
https://doi.org/10.1051/epn/19851606009
[40] Shrestha, R.G.; Shrestha, L.K.; Matsunaga, T.; Shibayama, M.; Aramaki, K. Lipophilic Tail Architecture and Molecular Structure of Neutralizing Agent for the Controlled Rheology of Viscoelastic Fluid in Amino Acid-Based Anionic Surfactant System. Langmuir 2011, 27, 2229-2236. https://doi.org/10.1021/la1048248
https://doi.org/10.1021/la1048248
[41] Shrestha, R.G.; Abezgauz, L.; Danino, D.; Sakai, K.; Sakai, H.; Abe, M. Structure and Dynamics of Poly(oxyethylene) Cholesteryl Ether Wormlike Micelles: Rheometry, SAXS, and Cryo-TEM Studies. Langmuir 2011, 27, 12877-12883. https://doi.org/10.1021/la202879f
https://doi.org/10.1021/la202879f
[42] Bhadani, A.; Shrestha, R.G.; Koura, S.; Endo, T.; Sakai, K.; Abe, M.; Sakai, H. Self-Aggregation Properties of New Ester-Based Gemini Surfactants and Their Rheological Behavior in the Presence of Cosurfactant - Monolaurin. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 258-266. https://doi.org/10.1016/j.colsurfa.2014.08.001
https://doi.org/10.1016/j.colsurfa.2014.08.001
[43] Pei, X.; Xu, Z.; Song, B.; Cui, Z.; Zhao, J. Wormlike Micelles Formed in Catanionic Systems Dominated by Cationic Gemini Surfactant: Synergistic Effect with High Efficiency. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 443, 508-514. https://doi.org/10.1016/j.colsurfa.2013.12.007
https://doi.org/10.1016/j.colsurfa.2013.12.007
[44] Lin, Z.; Scriven, L.E.; Davis, H.T. Cryogenic Electron Microscopy of Rodlike or Wormlike Micelles in Aqueous Solutions of Nonionic Surfactant Hexaethylene Glycol Monohexadecyl Ether. Langmuir 1992, 8, 2200-2205. https://doi.org/10.1021/la00045a021
https://doi.org/10.1021/la00045a021
[45] Vinson, P.K.; Talmon, Y. Comments on "Electron Diffraction Observed in the Gigantic Micelle-Producing System of CTAB-Aromatic Additives," by Hirata, Sakaiguchi, and Akai. J. Colloid Interface Sci. 1989, 133, 288-289. https://doi.org/10.1016/0021-9797(89)90305-6
https://doi.org/10.1016/0021-9797(89)90305-6
[46] Jerke, G.; Pedersen, J.S.; Egelhaaf, S.U.; Schurtenberger, P. Flexibility of Charged and Uncharged Polymer-Like Micelles. Langmuir 1998, 14, 6013-6024. https://doi.org/10.1021/la980390r
https://doi.org/10.1021/la980390r
[47] Groth, C.; Nydén, M.; Holmberg, K.; Kanicky, J.R.; Shah, D.O. Kinetics of the Self-Assembly of Gemini Surfactants. J. Surfactants Deterg. 2004, 7, 247-255. https://doi.org/10.1007/s11743-004-0308-8
https://doi.org/10.1007/s11743-004-0308-8
[48] Rosen, M.J.; Tracy, D.J. Gemini Surfactants. J. Surfactants Deterg. 1998, 1, 547-554. https://doi.org/10.1007/s11743-998-0057-8
https://doi.org/10.1007/s11743-998-0057-8
[49] Micich, T.J.; Linfield, W.M. Wetting Properties of Nonionics from Branched Fatty Diamides. J. Am. Oil Chem. Soc. 1988, 65, 820-825. https://doi.org/10.1007/BF02542540
https://doi.org/10.1007/BF02542540
[50] Quencer, L.B.; Kokke-Hall, S.; Loughney, T. Proceedings of CESIO 4th World Surfactant Congress. 1996, 2, 66.
[51] Kumar, N.; Tyagi, R. Industrial Applications of Dimeric Surfactants: A Review. J. Dispers. Sci. Technol. 2014, 35, 205-214. https://doi.org/10.1080/01932691.2013.780243
https://doi.org/10.1080/01932691.2013.780243
[52] Rosen, M.J. Gemini Surfactants. Industrial Applications of Surfactants IV 1999, 151-161. https://doi.org/10.1533/9781845698614.151
https://doi.org/10.1533/9781845698614.151
[53] Li, J.; Dahanayake, M.; Reierson, R.L.; Tracy, D.J. Amphoteric Surfactants Having Multiple Hydrophobic and Hydrophilic Groups. US patent 5,914,310, June 22, 1999.
[54] Choi, T.-S.; Shimizu, Y.; Shirai, H.; Hamada, K. Disperse Dyeing of Nylon 6 Fiber Using Gemini Surfactants Containing Ammonium Cations as Auxililiaries. Dyes Pigments 2001, 48, 217-226. https://doi.org/10.1016/S0143-7208(00)00105-4
https://doi.org/10.1016/S0143-7208(00)00105-4
[55] Choi, T.-S.; Shimizu, Y.; Shirai, H.; Hamada, K. Disperse Dyeing of Polyester Fiber Using Gemini Surfactants Containing Ammonium Cations as Auxililiaries. Dyes Pigments 2001, 50, 55-65. https://doi.org/10.1016/S0143-7208(01)00033-X
https://doi.org/10.1016/S0143-7208(01)00033-X
[56] Choi, T.-S.; Shimizu, Y.; Shirai, H.; Hamada, K. Solubilization of Disperse Dyes in Cationic Gemini Surfactant Micelles. Dyes Pigments 2000, 45, 145-152. https://doi.org/10.1016/S0143-7208(00)00015-2
https://doi.org/10.1016/S0143-7208(00)00015-2
[57] Dreja, M.; Tieke, B. Polymerization of Styrene in Ternary Microemulsion Using Cationic Gemini Surfactants Langmuir 1998, 14, 800-807. https://doi.org/10.1021/la9710738
https://doi.org/10.1021/la9710738
[58] El-Sadek, B.M. Synthesis of Selected Gemini Surfactants: Surface, Biological Activity and Corrosion Efficiency against Hydrochloric Acid Medium. Der Chemica Sinica 2011, 2, 125-137.
[59] Mobin, M.; Masroor, S. Cationic Gemini Surfactants as Novel Corrosion Inhibitor for Mild Steel in 1M HCl. Int. J. Electrochem. Sci. 2012, 7, 6920-6940. https://doi.org/10.1016/S1452-3981(23)15758-0
https://doi.org/10.1016/S1452-3981(23)15758-0
[60] Chen, X.; Wang, J.; Shen, N.; Luo, Y.; Li, L.; Liu, M.; Thomas, R.K. Gemini Surfactant/DNA Complex Monolayers at the Air−Water Interface: Effect of Surfactant Structure on the Assembly, Stability and Topography of Monolayers. Langmuir 2002, 18, 6222-6228. https://doi.org/10.1021/la025600l
https://doi.org/10.1021/la025600l
[61] Yan, X.; Janout, V.; Regen, S.L. Hydrophobic Sponges: Resin-Bound Surfactants as Organic Scavengers. Macromolecules 2002, 35, 8243-8246. https://doi.org/10.1021/ma020568n
https://doi.org/10.1021/ma020568n
[62] Fielden, M.L.; Perrin, C.; Kremer, A.; Bergsma, M.; Stuart, M.C.; Camilleri, P.; Engberts, J.B.F.N. Sugar-Based Tertiary Amino Gemini Surfactants with a Vesicle-to-Micelle Transition in the Endosomal pH Range Mediate Efficient Transfection in vitro. Eur. J. Biochem. 2001, 268, 1269-1279. https://doi.org/10.1046/j.1432-1327.2001.01995.x
https://doi.org/10.1046/j.1432-1327.2001.01995.x
[63] Buijnsters, P.J.J.A.; Rodríguez, C.L.G.; Willighagen, E.L.; Sommerdijk, N.A.J.M.; Kremer, A.; Camilleri, P.; Feiters, M.C.; Nolte, R.J.M.; Zwanenburg, B. Cationic Gemini Surfactants Based on Tartaric Acid: Synthesis, Aggregation, Monolayer Behaviour, and Interaction with DNA. Eur. J. Org. Chem. 2002, 2002, 1397-1406. https://doi.org/10.1002/1099-0690(200204)2002:8<1397::AID-EJOC1397>3.0.CO;2-6
https://doi.org/10.1002/1099-0690(200204)2002:8<1397::AID-EJOC1397>3.0.CO;2-6
[64] Wilhelm, M.; Zhao, C.L.; Wang, Y.; Xu, R.; Winnik, M.A.; Mura, J.L.; Riess, G.; Croucher, M.D. Poly(Styrene-Ethylene Oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study. Macromoleules 1991, 24, 1033-1040. https://doi.org/10.1021/ma00005a010
https://doi.org/10.1021/ma00005a010
[65] Schmitz, C.; Mourran, A.; Keul, H.; Möller, M. Synthesis and Association Behaviour of Linear Block Copolymers with Different Microstructures but the Same Composition. Macromol. Chem. Phys. 2008, 209, 1859-1971. https://doi.org/10.1002/macp.200800205
https://doi.org/10.1002/macp.200800205
[66] Matsuoka, H.; Matsutani, M.; Mouri, E.; Matsumoto, K. Polymer Micelle Formation without Gibbs Monolayer Formation: Synthesis and Characteritics of Amphiphilic Diblock Copolymer Having Strong Acid Groups. Macromolecules 2003, 36, 5321-5330. https://doi.org/10.1021/ma0215161
https://doi.org/10.1021/ma0215161
[67] Khomenko, О.; Budishevska, O.; Voronov, A.; Varvarenko, S.; Kudina, O.; Tarnavchyk, I.; Voronov, S. Amphiphilic Diesters of Pyromellitic Acid with Cholesterol Fragments for Solubilization of Lipophilic Substances. Reports of the National Academy of Sciences of Ukraine 2013, 7, 123-129. http://dspace.nbuv.gov.ua/handle/123456789/85809
https://doi.org/10.11159/ijtan.2013.002
[68] Suckling, K.E.; Benson, G.M.; Bond, B.; Gee, A.; Glen, A.; Haynes, C.; Jackson, B. Cholesterol Lowering and Bile Acid Excretion in the Hamster with Cholestyramine Treatment. Atherosclerosis 1991, 89, 183-190. https://doi.org/10.1016/0021-9150(91)90059-C
https://doi.org/10.1016/0021-9150(91)90059-C
[69] Mol, M.J.T.M.; Erkelens, D.W.; Leuven, J.A.G.; Schouten, J.A.; Stalenhoef, A.F.H. Simvastatin (MK-733): A Potent Cholesterol Synthesis Inhibitor in Heterozygous Familial Hypercholesterolaemia. Atherosclerosis 1988, 69, 131-137. https://doi.org/10.1016/0021-9150(88)90006-8
https://doi.org/10.1016/0021-9150(88)90006-8
[70] Rosenson, R. Patient education: High Cholesterol and Lipids (Beyond the Basics). UpToDate. 2024, Sep 27. UpToDate Inc. www.uptodate.com.
https://doi.org/10.1097/01.ASM.0001006804.64026.22
[71] Molecular probes. Amplex® RedCholesterolAssayKitCatalogno. A12216.
[72] Okada, H.; Toguchi, H. Biodegradable Microspheres in Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 1995, 12, 1-99. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v12.i1.10
https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v12.i1.10
[73] Scott, G.; Gilead, D. Degradable Polymers, Principles and Applications; Chapman & Hall, 1995.
https://doi.org/10.1007/978-94-011-0571-2
[74] Anderson, J.M.; Shive, M.S. Biodegradation and Biocompatibility of PLA and PLGA Microspheres. Adv. Drug Deliv. Rev. 2002, 64, 72-82. https://doi.org/10.1016/j.addr.2012.09.004
https://doi.org/10.1016/j.addr.2012.09.004
[75] Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic Degradation of Devices Based on Poly(DL-Lactic Acid) Size-Dependence. Biomaterials 1995, 16, 305-311. https://doi.org/10.1016/0142-9612(95)93258-F
https://doi.org/10.1016/0142-9612(95)93258-F
[76] Vert, M.; Li, S.M.; Garreau, H. Attempts to Map the Structure and Degradation Characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids. J. Biomater. Sci. Polym. Ed. 1995, 6, 639-649. https://doi.org/10.1163/156856294X00581
https://doi.org/10.1163/156856294X00581
[77] Vert, M.; Li, S. M.; Garreau, H. Recent Advances in the Field of Lactic Acid/Glycolic Acid Polymer-Based Therapeutic Systems. Macromol. Symp. 1995, 98, 633-642. https://doi.org/10.1002/masy.19950980154
https://doi.org/10.1002/masy.19950980154
[78] Huh, K.M.; Min, H.S.; Lee, S.C.; Lee, H.J.; Kim, S.; Park, K. A New Hydrotropic Block Copolymer Micelle System for Aqueous Solubilization of Paclitaxel. J. Control. Release 2008, 126, 122-129. https://doi.org/10.1016/j.jconrel.2007.11.008
https://doi.org/10.1016/j.jconrel.2007.11.008
[79] Konno, T.; Junji, W.; Ishihara, K. Enhanced Solubility of Paclitaxel Using Water-Soluble and Biocompatible 2-Methacryloyloxyethyl Phosphorylcholine Polymers. J. Biomed. Mater. Res. - A 2003, 65A, 209-214. https://doi.org/10.1002/jbm.a.10481
https://doi.org/10.1002/jbm.a.10481
[80] Kim, S.C.; Kim, D.W.; Shim, Y.H.; Bang, J.S.; Oh, H.S.; Kim, S.W.; Seo, M.H. In Vivo Evaluation of Polymeric Micellar Paclitaxel Formulation: Toxicity and Efficacy. J. Control. Release 2001, 72, 191-202. https://doi.org/10.1016/S0168-3659(01)00275-9
https://doi.org/10.1016/S0168-3659(01)00275-9
[81] Desai, N.P.; Trieu, V.; Hwang, L.Y.; Wu, R.; Soon-Shiong, P.; Gradishar, W.J. Improved Effectiveness of Nanoparticle Albumin-Bound (NAB) Paclitaxel Versus Polysorbate-Based Docetaxel in Multiple Xenografts as a Function of HER2 and SPARC Status. Anti-Cancer Drugs 2008, 19, 899-909. https://doi.org/10.1097/CAD.0b013e32830f9046
https://doi.org/10.1097/CAD.0b013e32830f9046
[82] Wu, J.; Liu, Q.; Lee, R.J. A Folate Receptor-Targeted Liposomal Formulation for Paclitaxel. Int. J. Pharm. 2006, 316, 148-153. https://doi.org/10.1016/j.ijpharm.2006.02.027
https://doi.org/10.1016/j.ijpharm.2006.02.027
[83] Litzinger, D.C.; Huang, L. Phosphatodylethanolamine Liposomes: Drug Delivery, Gene Transfer and Immunodiagnostic Applications. Biochim. Biophys. Acta, Rev. Biomembr. 1992, 1113, 201-227. https://doi.org/10.1016/0304-4157(92)90039-D
https://doi.org/10.1016/0304-4157(92)90039-D
[84] Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in Cancer Therapeutics: Bioconjugated Nanoparticles for Drug Delivery. Mol. Cancer Ther. 2006, 5, 1909-1917. https://doi.org/10.1158/1535-7163.MCT-06-0141
https://doi.org/10.1158/1535-7163.MCT-06-0141
[85] Sakamoto, J.H.; van de Ven, A.L.; Godin, B.; Blanco, E.; Serda, R.E.; Grattoni, A.; Ziemys, A.; Bouamrani, A.; Hu, T.; Ranganathan, S.I. et al. Enabling Individualized Therapy through Nanotechnology. Pharmacol. Res. 2010, 62, 57-89. https://doi.org/10.1016/j.phrs.2009.12.011
https://doi.org/10.1016/j.phrs.2009.12.011
[86] Lo, C.-L.; Lin, K.-M.; Huang, C.-K.; Hsiue, G.-H. Self-Assembly of a Micelle Structure from Graft and Diblock Copolymers: An Example of Overcoming the Limitations of Polyions in Drug Delivery. Adv. Funct. Mater. 2006, 16, 2309-2316. https://doi.org/10.1002/adfm.200500627
https://doi.org/10.1002/adfm.200500627
[87] Anand, P.; Kunnumakkara, A.B.; Newman, R.A. Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics 2007, 4, 807-818. https://doi.org/10.1021/mp700113r
https://doi.org/10.1021/mp700113r
[88] Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Polymers Containing Cholesterol for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
https://doi.org/10.23939/chcht10.04si.561
[89] Kumar, A.; Ahuja, A.; Ali, J.; Baboota, S. Conundrum and Therapeutic Potential of Curcumin in Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 2010, 27, 279-312. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i4.10
https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i4.10
[90] Khomenko, O.; Budishevska, O.;Voronov, A.; Kudina, О.; Tarnavchyk, I.; Voronov, S. Amphiphilic Oligomers Based on Diesters of Pyromellitic Acid for the Solubilization of Lipophilic Agents. Int. J. Theor. Appl. Nanotechnol. 2013, 1, 17-25. https://doi.org/10.11159/ijtan.2013.002
https://doi.org/10.11159/ijtan.2013.002
[91] Lipophilicity in Drug Action and Toxicology; Plišca, V.; Testa, B.; van de Waterbeemd, H., Eds.; VCH: Weinheim, 1996.
[92] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(Ethylene Glycol). Chem. Chem. Technol. 2014, 8, 171-176. https://doi.org/10.23939/chcht08.02.171
https://doi.org/10.23939/chcht08.02.171
[93] Khomenko, О.; Budishevska, O; Varvarenko, S.; Voronov, A.; Kudina, О.; Chekailo, M.; Voronov, S. Micellar structures of amphiphilic diesters of pyromellitic acid for the synthesis of silver nanoparticles. Bulletin of the National University "Lviv Polytechnic" series: "Chemistry, technology of substances and their applications" 2012, 726, 332-340.
[94] Voronov, A.; Kohut, A.; Vasylyev, S.; Peukert, W. Mechanism of Silver Ion Reduction in Concentrated Solutions of Amphiphilic Invertible Polyesters in Nonpolar Solvent at Room Temperature. Langmuir 2008, 24, 12587-12594. https://doi.org/10.1021/la801769v
https://doi.org/10.1021/la801769v