Attachment | Size |
---|---|
![]() | 574.34 KB |
[1] Quintavalla, A.; Carboni, D.; Sepe, C.; Mummolo, L.; Zaccheroni, N.; Lombardo, M. Towards a More Sustainable Photocatalyzed α-Arylation of Amines: Green Solvents, Catalyst Recycling and Low Loading. Adv. Synth. Catal. 2023, 365, 252-262. https://doi.org/10.1002/ADSC.202201123
https://doi.org/10.1002/adsc.202201123
[2] Fantoni, T.; Tolomelli, A.; Cabri, W. A Translation of the Twelve Principles of Green Chemistry to Guide the Development of Cross-Coupling Reactions. Catal. Today 2022, 397-399, 265-271. https://doi.org/10.1016/j.cattod.2021.09.022
https://doi.org/10.1016/j.cattod.2021.09.022
[3] Gallezot, P. Conversion of Biomass to Selected Chemical Products. Chem. Soc. Rev. 2012, 41, 1538-1558. https://doi.org/10.1039/C1CS15147A
https://doi.org/10.1039/C1CS15147A
[4] Cao, R.; Zhang, M.-Q.; Hu, C.; Xiao, D.; Wang, M.; Ma, D. Catalytic Oxidation of Polystyrene to Aromatic Oxygenates over a Graphitic Carbon Nitride Catalyst. Nat. Commun. 2022, 13, 4809. https://doi.org/10.1038/s41467-022-32510-x
https://doi.org/10.1038/s41467-022-32510-x
[5] Tu, J.; Shen, Z.; Huang, B. Light‐Induced Direct Decarboxylative Functionalization of Aromatic Carboxylic Acids. Adv. Synth. Catal. 2024, 366, 4263-4273. https://doi.org/10.1002/adsc.202400573
https://doi.org/10.1002/adsc.202400573
[6] Su, F.; Liu, Y.; Wang, L.; Cao, Y.; He, H.; Fan, K. Ga-Al Mixed‐Oxide-Supported Gold Nanoparticles with Enhanced Activity for Aerobic Alcohol Oxidation. Angew. Chemie Int. Ed. 2008, 47, 334-337. https://doi.org/10.1002/anie.200704370
https://doi.org/10.1002/anie.200704370
[7] Parlett, C. M. A.; Durndell, L. J.; Machado, A.; Cibin, G.; Bruce, D. W.; Hondow, N. S.; Wilson, K.; Lee, A. F. Alumina-Grafted SBA-15 as a High Performance Support for Pd-Catalysed Cinnamyl Alcohol Selective Oxidation. Catal. Today 2014, 229, 46-55. https://doi.org/10.1016/j.cattod.2013.11.056
https://doi.org/10.1016/j.cattod.2013.11.056
[8] Sadiq, M.; Razia; Hussain, S.; Zamin, G. Efficiency of Iron Supported on Porous Material (Prepared from Peanut Shell) for Liquid Phase Aerobic Oxidation of Alcohols. Mod. Res. Catal. 2014, 03, 35-48. https://doi.org/10.4236/mrc.2014.32006
https://doi.org/10.4236/mrc.2014.32006
[9] Luque, R.; Badamali, S. K.; Clark, J. H.; Fleming, M.; Macquarrie, D. J. Controlling Selectivity in Catalysis: Selective Greener Oxidation of Cyclohexene under Microwave Conditions. Appl. Catal. A Gen. 2008, 341, 154-159. https://doi.org/10.1016/j.apcata.2008.02.037
https://doi.org/10.1016/j.apcata.2008.02.037
[10] Clark, J. H. Catalysis for Green Chemistry. Pure Appl. Chem. 2001, 73, 103-111. https://doi.org/10.1351/pac200173010103
https://doi.org/10.1351/pac200173010103
[11] Edwards, J. K.; Hutchings, G. J. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angew. Chemie Int. Ed. 2008, 47, 9192-9198. https://doi.org/10.1002/anie.200802818
https://doi.org/10.1002/anie.200802818
[12] Hughes, M. D.; Xu, Y.-J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; et al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation under Mild Conditions. Nature 2005, 437, 1132-1135. https://doi.org/10.1038/nature04190
https://doi.org/10.1038/nature04190
[13] Rathi, A. K.; Gawande, M. B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R. S.; et al. Maghemite Decorated with Ultra-Small Palladium Nanoparticles (γ-Fe2O3-Pd): Applications in the Heck-Mizoroki Olefination, Suzuki Reaction and Allylic Oxidation of Alkenes. Green Chem. 2016, 18, 2363-2373. https://doi.org/10.1039/C5GC02264A
https://doi.org/10.1039/C5GC02264A
[14] Yokoi, T.; Yoshioka, M.; Imai, H.; Tatsumi, T. Diversification of RTH‐Type Zeolite and Its Catalytic Application. Angew. Chemie Int. Ed. 2009, 48, 9884-9887. https://doi.org/10.1002/anie.200905214
https://doi.org/10.1002/anie.200905214
[15] Pal, N.; Bhaumik, A. Mesoporous Materials: Versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations. RSC Adv. 2015, 5, 24363-24391. https://doi.org/10.1039/c4ra13077d
https://doi.org/10.1039/C4RA13077D
[16] Sugunan, S.; Paul, A. Basicity and Catalytic Activity of ZrO2−Y2O3 Mixed Oxides in the Oxidation of Cyclohexanol. React. Kinet. Catal. Lett. 1998, 65, 343-348. https://doi.org/10.1007/BF02475274
https://doi.org/10.1007/BF02475274
[17] Dong, X.-W.; Yang, Y.; Che, J.-X.; Zuo, J.; Li, X.-H.; Gao, L.; Hu, Y.-Z.; Liu, X.-Y. Heterogenization of Homogeneous Chiral Polymers in Metal-Organic Frameworks with Enhanced Catalytic Performance for Asymmetric Catalysis. Green Chem. 2018, 20, 4085-4093. https://doi.org/10.1039/C8GC01323C
https://doi.org/10.1039/C8GC01323C
[18] Adhikary, J.; Guha, A.; Chattopadhyay, T.; Das, D. Heterogenization of Three Homogeneous Catalysts: A Comparative Study as Epoxidation Catalyst. Inorganica Chim. Acta 2013, 406, 1-9. https://doi.org/10.1016/j.ica.2013.06.045
https://doi.org/10.1016/j.ica.2013.06.045
[19] Copéret, C.; Chabanas, M.; Petroff Saint‐Arroman, R.; Basset, J. Homogeneous and Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry. Angew. Chemie Int. Ed. 2003, 42, 156-181. https://doi.org/10.1002/anie.200390072
https://doi.org/10.1002/anie.200390072
[20] Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica‐Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chemie Int. Ed. 2006, 45, 3216-3251. https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/anie.200503075
[21] Saha, P. K.; Saha, S.; Koner, S. Chromotropism of Cr(Salen) Moiety in Zeolite Matrix: Synthesis, Characterization and Catalytic Activity Study of Cr(Salen)-NaY Hybrid Catalyst. J. Mol. Catal. A Chem. 2003, 203, 173-178. https://doi.org/10.1016/S1381-1169(03)00252-8
https://doi.org/10.1016/S1381-1169(03)00252-8
[22] Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chemie Int. Ed. 1999, 38, 56-77. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3C56::AID-ANIE56%3E3.0.CO;2-E
https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
[23] Juaristi, E. Recent Developments in next Generation (S)-Proline-Derived Chiral Organocatalysts. Tetrahedron 2021, 88, 132143. https://doi.org/10.1016/j.tet.2021.132143
https://doi.org/10.1016/j.tet.2021.132143
[24] Jawale, D. V.; Fossard, F.; Miserque, F.; Geertsen, V.; Doris, E.; Gravel, E. Bimetallic Ruthenium-Rhodium Particles Supported on Carbon Nanotubes for the Hydrophosphinylation of Alkenes and Alkynes. Catal. Sci. Technol. 2022, 12, 4983-4987. https://doi.org/10.1039/D2CY00857B
https://doi.org/10.1039/D2CY00857B
[25] Yadav, J.; Dolas, A. J.; Iype, E.; Rangan, K.; Ohshita, J.; Kumar, D.; Kumar, I. Asymmetric Synthesis of Bridged N -Heterocycles with Tertiary Carbon Center through Barbas Dienamine-Catalysis: Scope and Applications. J. Org. Chem. 2021, 86, 17213-17225. https://doi.org/10.1021/acs.joc.1c02295
https://doi.org/10.1021/acs.joc.1c02295
[26] Banerjee, M.; Panjikar, P. C.; Bhutia, Z. T.; Bhosle, A. A.; Chatterjee, A. Micellar Nanoreactors for Organic Transformations with a Focus on "Dehydration" Reactions in Water: A Decade Update. Tetrahedron 2021, 88, 132142. https://doi.org/10.1016/j.tet.2021.132142
https://doi.org/10.1016/j.tet.2021.132142
[27] Chen, P.; Zhang, H.-B.; Lin, G.-D.; Hong, Q.; Tsai, K. R. Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or CO on a Ni MgO Catalyst. Carbon 1997, 35, 1495-1501. https://doi.org/10.1016/S0008-6223(97)00100-0
https://doi.org/10.1016/S0008-6223(97)00100-0
[28] Demeese, C.; Lods, C.; Buisson, D.-A.; Gravel, E.; Namboothiri, I. N. N.; Doris, E. Supramolecular Assembly of Proline Amphiphiles on Carbon Nanotubes as Heterogenized Catalyst for Enantioselective Aldol Reactions in Water. Chem. Eng. J. 2023, 476, 146702. https://doi.org/10.1016/j.cej.2023.146702
https://doi.org/10.1016/j.cej.2023.146702
[29] Kumar, R. A.; Jawale, D. V.; Oheix, E.; Geertsen, V.; Gravel, E.; Doris, E. Tailor - Made Polydiacetylene Micelles for the Catalysis of 1,3‐Dipolar Cycloadditions in Water. Adv. Synth. Catal. 2020, 362, 4425-4431. https://doi.org/10.1002/adsc.202000795
https://doi.org/10.1002/adsc.202000795
[30] Farah, J.; Gravel, E.; Doris, E.; Malloggi, F. Direct Integration of Gold-Carbon Nanotube Hybrids in Continuous-Flow Microfluidic Chips: A Versatile Approach for Nanocatalysis. J. Colloid Interface Sci. 2022, 613, 359-367. https://doi.org/10.1016/j.jcis.2021.12.178
https://doi.org/10.1016/j.jcis.2021.12.178
[31] Ziccarelli, I.; Mancuso, R.; Giacalone, F.; Calabrese, C.; La Parola, V.; De Salvo, A.; Della Ca', N.; Gruttadauria, M.; Gabriele, B. Heterogenizing Palladium Tetraiodide Catalyst for Carbonylation Reactions. J. Catal. 2022, 413, 1098-1110. https://doi.org/10.1016/j.jcat.2022.08.007
https://doi.org/10.1016/j.jcat.2022.08.007
[32] Masteri-Farahani, M.; Rahimi, M.; Hosseini, M.-S. Heterogenization of Porphyrin Complexes within the Nanocages of SBA-16: New Efficient and Stable Catalysts for the Epoxidation of Olefins. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 603, 125229. https://doi.org/10.1016/j.colsurfa.2020.125229
https://doi.org/10.1016/j.colsurfa.2020.125229
[33] Andreu, C.; del Olmo, M.; Asensio, G. Effect of Addition of Lewis/Brönsted Acids in the Asymmetric Aldol Condensation Catalyzed by Trifluoroacetate Salts of Proline-Based Dipeptides. Tetrahedron 2012, 68, 7966-7972. https://doi.org/10.1016/j.tet.2012.07.006
https://doi.org/10.1016/j.tet.2012.07.006
[34] Al-Hunaiti, A.; Al-Said, N.; Halawani, L.; Haija, M. A.; Baqaien, R.; Taher, D. Synthesis of Magnetic CuFe2O4 Nanoparticles as Green Catalyst for Toluene Oxidation under Solvent-Free Conditions. Arab. J. Chem. 2020, 13, 4945-4953. https://doi.org/10.1016/j.arabjc.2020.01.017
https://doi.org/10.1016/j.arabjc.2020.01.017
[35] Sakthivel, A.; Badamali, S. K.; Selvam, P. Catalytic Oxidation of Alkylaromatics over Mesoporous (Cr)MCM-41. Catal. Letters 2002, 80, 73-76. https://doi.org/10.1023/A:1015330827806
https://doi.org/10.1023/A:1015330827806
[36] Kaur, M.; Ratan, A.; Kunchakara, S.; Dutt, M.; Singh, V. Cr Doped MCM-41 Nanocomposites: An Efficient Mesoporous Catalyst Facilitating Conversion of Toluene to Benzaldehyde, an Industrial Precursor. J. Porous Mater. 2019, 26, 239-246. https://doi.org/10.1007/s10934-018-0642-z
https://doi.org/10.1007/s10934-018-0642-z
[37] Sadiq, M.; Saeed, K.; Sadiq, S.; Munir, S.; Khan, M. Liquid Phase Oxidation of Cinnamyl Alcohol to Cinnamaldehyde Using Multiwall Carbon Nanotubes Decorated with Zinc-Manganese Oxide Nanoparticles. Appl. Catal. A Gen. 2017, 539, 97-103. https://doi.org/10.1016/j.apcata.2017.04.007
https://doi.org/10.1016/j.apcata.2017.04.007
[38] Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. Metal Organic Framework Catalysis: Quo Vadis ? ACS Catal. 2014, 4, 361-378. https://doi.org/10.1021/cs400959k
https://doi.org/10.1021/cs400959k
[39] Chen, S.-C.; Lu, S.-N.; Tian, F.; Li, N.; Qian, H.-Y.; Cui, A.-J.; He, M.-Y.; Chen, Q. Highly Selective Aerobic Oxidation of Alcohols to Aldehydes over a New Cu(II)-Based Metal-Organic Framework with Mixed Linkers. Catal. Commun. 2017, 95, 6-11. https://doi.org/10.1016/j.catcom.2017.02.024
https://doi.org/10.1016/j.catcom.2017.02.024
[40] Mahdavi, V.; Mardani, M. Preparation of Manganese Oxide Immobilized on SBA-15 by Atomic Layer Deposition as an Efficient and Reusable Catalyst for Selective Oxidation of Benzyl Alcohol in the Liquid Phase. Mater. Chem. Phys. 2015, 155, 136-146. https://doi.org/10.1016/j.matchemphys.2015.02.011
https://doi.org/10.1016/j.matchemphys.2015.02.011
[41] Deng, Y.-Q.; Zhang, T.; Au, C.-T.; Yin, S.-F. Liquid-Phase Catalytic Oxidation of p-Chlorotoluene to p-Chlorobenzaldehyde over Manganese Oxide Octahedral Molecular Sieves. Appl. Catal. A Gen. 2013, 467, 117-123. https://doi.org/10.1016/j.apcata.2013.07.015
https://doi.org/10.1016/j.apcata.2013.07.015
[42] Krüger, A. J. D.; Köhler, J.; Cichosz, S.; Rose, J. C.; Gehlen, D. B.; Haraszti, T.; Möller, M.; De Laporte, L. A Catalyst-Free, Temperature Controlled Gelation System for in-Mold Fabrication of Microgels. Chem. Commun. 2018, 54, 6943-6946. https://doi.org/10.1039/C8CC02478B
https://doi.org/10.1039/C8CC02478B
[43] Masaki, Y.; Yamazaki, K.; Kawai, H.; Yamada, T.; Itoh, A.; Arai, Y.; Furukawa, H. Recyclable Polymeric π-Acid Catalyst Effective on Mannich-Type Reaction in Water. Chem. Pharm. Bull. 2006, 54, 591-593. https://doi.org/10.1248/cpb.54.591
https://doi.org/10.1248/cpb.54.591
[44] Pich, A. R. W. Chemical Design of Responsive Microgels, 1st ed., Vol. 1; 2011.
https://doi.org/10.1007/978-3-642-16379-1
[45] Dai, Z.; Ngai, T. Microgel Particles: The Structure‐Property Relationships and Their Biomedical Applications. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2995-3003. https://doi.org/10.1002/pola.26698
https://doi.org/10.1002/pola.26698
[46] Kratz, K.; Hellweg, T.; Eimer, W. Structural Changes in PNIPAM Microgel Particles as Seen by SANS, DLS, and EM Techniques. Polymer (Guildf) 2001, 42, 6631-6639. https://doi.org/10.1016/S0032-3861(01)00099-4
https://doi.org/10.1016/S0032-3861(01)00099-4
[47] Dalmont, H.; Pinprayoon, O.; Saunders, B. R. Study of PH-Responsive Microgels Containing Methacrylic Acid: Effects of Particle Composition and Added Calcium. Langmuir 2008, 24, 2834-2840. https://doi.org/10.1021/la703597a
https://doi.org/10.1021/la703597a
[48] Zhang, Q. M.; Wang, W.; Su, Y.-Q.; Hensen, E. J. M.; Serpe, M. J. Biological Imaging and Sensing with Multiresponsive Microgels. Chem. Mater. 2016, 28, 259-265. https://doi.org/10.1021/acs.chemmater.5b04028
https://doi.org/10.1021/acs.chemmater.5b04028
[49] Karg, M.; Pich, A.; Hellweg, T.; Hoare, T.; Lyon, L. A.; Crassous, J. J.; Suzuki, D.; Gumerov, R. A.; Schneider, S.; Potemkin, I. I.; et al. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir 2019, 35, 6231-6255. https://doi.org/10.1021/acs.langmuir.8b04304
https://doi.org/10.1021/acs.langmuir.8b04304
[50] Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core-Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angew. Chemie Int. Ed. 2006, 45, 813-816. https://doi.org/10.1002/anie.200502731
https://doi.org/10.1002/anie.200502731
[51] Schild, H. G. Poly(N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163-249. https://doi.org/10.1016/0079-6700(92)90023-R
https://doi.org/10.1016/0079-6700(92)90023-R
[52] Du, J.; Lu, H. Polymeric Micelles. In Encyclopedia of Polymer Science and Technology; Wiley, 2012.
https://doi.org/10.1002/0471440264.pst547
[53] Cortez-Lemus, N. A.; Licea-Claverie, A. Poly(N-Vinylcaprolactam), a Comprehensive Review on a Thermoresponsive Polymer Becoming Popular. Prog. Polym. Sci. 2016, 53, 1-51. https://doi.org/10.1016/j.progpolymsci.2015.08.001
https://doi.org/10.1016/j.progpolymsci.2015.08.001
[54] Schmid, A. J.; Dubbert, J.; Rudov, A. A.; Pedersen, J. S.; Lindner, P.; Karg, M.; Potemkin, I. I.; Richtering, W. Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Sci. Rep. 2016, 6, 22736. https://doi.org/10.1038/srep22736
https://doi.org/10.1038/srep22736
[55] Arif, M.; Rauf, A.; Akhter, T. A Review on Ag Nanoparticles Fabricated in Microgels. RSC Adv. 2024, 14, 19381-19399. https://doi.org/10.1039/D4RA02467B
https://doi.org/10.1039/D4RA02467B
[56] Chang, K.; Yan, Y.; Zhang, D.; Xia, Y.; Chen, X.; Lei, L.; Shi, S. Synergistic Bonding of Poly(N-Isopropylacrylamide)-Based Hybrid Microgels and Gold Nanoparticles Used for Temperature-Responsive Controllable Catalysis of p-Nitrophenol Reduction. Langmuir 2023, 39, 2408-2421. https://doi.org/10.1021/acs.langmuir.2c03236
https://doi.org/10.1021/acs.langmuir.2c03236
[57] Arif, M. Noble Metal Nanoparticles Encapsulated Smart Microgels: A Critical Review. J. Mol. Liq. 2024, 403, 124869. https://doi.org/10.1016/j.molliq.2024.124869
https://doi.org/10.1016/j.molliq.2024.124869
[58] Pany, B.; Majumdar, A. G.; Bhat, S.; Si, S.; Yamanaka, J.; Mohanty, P. S. Polymerized Stimuli-Responsive Microgel Hybrids of Silver Nanoparticles as Efficient Reusable Catalyst for Reduction Reaction. Heliyon 2024, 10, e26244. https://doi.org/10.1016/j.heliyon.2024.e26244
https://doi.org/10.1016/j.heliyon.2024.e26244
[59] Biffis, A.; Cunial, S.; Spontoni, P.; Prati, L. Microgel-Stabilized Gold Nanoclusters: Powerful "Quasi-Homogeneous" Catalysts for the Aerobic Oxidation of Alcohols in Water. J. Catal. 2007, 251, 1-6. https://doi.org/10.1016/j.jcat.2007.07.024
https://doi.org/10.1016/j.jcat.2007.07.024
[60] Jiang, L.; Ao, Q.; Tong, X.; Lv, X.; Song, Y.; Tang, J. A Biocatalytic Cascade in Enzyme/Metal Continuous-Microflow Microgel with Stable Intermediate Channel for Point-of-Care Biosensing. Biosens. Bioelectron. 2024, 248, 115965. https://doi.org/10.1016/j.bios.2023.115965.
https://doi.org/10.1016/j.bios.2023.115965
[61] Ma, X.; Kong, S.; Li, Z.; Zhen, S.; Sun, F.; Yang, N. Effect of Cross-Linking Density on the Rheological Behavior of Ultra-Soft Chitosan Microgels at the Oil-Water Interface. J. Colloid Interface Sci. 2024, 672, 574-588. https://doi.org/10.1016/j.jcis.2024.06.026
https://doi.org/10.1016/j.jcis.2024.06.026
[62] Piera, J.; Bäckvall, J. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer-A Biomimetic Approach. Angew. Chemie Int. Ed. 2008, 47, 3506-3523. https://doi.org/10.1002/anie.200700604
https://doi.org/10.1002/anie.200700604
[63] Rostami, A.; Akradi, J. A Highly Efficient, Green, Rapid, and Chemoselective Oxidation of Sulfides Using Hydrogen Peroxide and Boric Acid as the Catalyst under Solvent-Free Conditions. Tetrahedron Lett. 2010, 51, 3501-3503. https://doi.org/10.1016/j.tetlet.2010.04.103
https://doi.org/10.1016/j.tetlet.2010.04.103
[64] Organoselenium Chemistry; Wirth, T., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; Vol. 208.
[65] Organoselenium Chemistry; Wirth, T., Ed.; Wiley, 2011.
[66] Hori, T.; Sharpless, K. B. Synthetic Applications of Arylselenenic and Arylseleninic Acids. Conversion of Olefins to Allylic Alcohols and Epoxides. J. Org. Chem. 1978, 43, 1689-1697. https://doi.org/10.1021/jo00403a015
https://doi.org/10.1021/jo00403a015
[67] Flohé, L.; Loschen, G.; Günzler, W. A.; Eichele, E. Glutathione Peroxidase, V. The Kinetic Mechanism. Hoppe-Seyler's Zeitschrift für Physiol. Chemie 1972, 353, 987-1000. https://doi.org/10.1515/bchm2.1972.353.1.987
https://doi.org/10.1515/bchm2.1972.353.1.987
[68] Prabhakar, R.; Vreven, T.; Morokuma, K.; Musaev, D. G. Elucidation of the Mechanism of Selenoprotein Glutathione Peroxidase (GPx)-Catalyzed Hydrogen Peroxide Reduction by Two Glutathione Molecules: A Density Functional Study. Biochemistry 2005, 44, 11864-11871. https://doi.org/10.1021/bi050815q
https://doi.org/10.1021/bi050815q
[69] Alberto, E. E.; Braga, A. L. Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 251-283.
https://doi.org/10.1007/978-3-642-20699-3_11
[70] Nebesnyi, R.; Ivasiv, V.; Pikh, Z.; Kharandiuk, T.; Shpyrka, I.; Voronchak, T.; Shatan, A. B. Low Temperature Acrolein to Acrylic Acid Oxidation with Hydrogen Peroxide on Se-Organic Catalysts. Chem. Chem. Technol. 2019, 13, 38-45. https://doi.org/10.23939/chcht13.01.038
https://doi.org/10.23939/chcht13.01.038
[71] Rangraz, Y.; Nemati, F.; Elhampour, A. Diphenyl Diselenide Immobilized on Magnetic Nanoparticles: A Novel and Retrievable Heterogeneous Catalyst in the Oxidation of Aldehydes under Mild and Green Conditions. J. Colloid Interface Sci. 2018, 509, 485-494. https://doi.org/10.1016/j.jcis.2017.09.034
https://doi.org/10.1016/j.jcis.2017.09.034
[72] Stadtman, T. C. Selenium Biochemistry. Annu. Rev. Biochem. 1990, 59, 111-127. https://doi.org/10.1146/annurev.bi.59.070190.000551
https://doi.org/10.1146/annurev.bi.59.070190.000551
[73] Tan, K. H.; Xu, W.; Stefka, S.; Demco, D. E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V. S.; Potemkin, I. I.; Pich, A. Selenium - Modified Microgels as Bio‐Inspired Oxidation Catalysts. Angew. Chemie Int. Ed. 2019, 58, 9791-9796. https://doi.org/10.1002/anie.201901161
https://doi.org/10.1002/anie.201901161
[74] Kharandiuk, T.; Tan, K. H.; Kubitska, I.; Al Enezy-Ulbrich, M. A.; Ivasiv, V.; Nebesnyi, R.; Potemkin, I. I.; Pich, A. Synthesis of Acrylic Acid and Acrylic Esters via Oxidation and Oxidative Alkoxylation of Acrolein under Mild Conditions with Selenium-Modified Microgel Catalysts. React. Chem. Eng. 2022, 7. https://doi.org/10.1039/d2re00252c
https://doi.org/10.1039/D2RE00252C