Advances in Heterogenization of Catalysts for Fine Organic Synthesis via Catalytic Oxidation in Liquid Medium: A Review

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Anastasiia Pavliuk1, Volodymyr Ivasiv1, Roman Nebesnyi1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandera St., 79013 Lviv, Ukraine roman.v.nebesnyi@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.01.117
AttachmentSize
PDF icon full_text.pdf574.34 KB
Abstract: 
Heterogenization of catalysts offers numerous advantages over homogeneous systems, including enhanced stability, reusability, and fine-tuning of properties. This approach is particularly relevant for developing environmentally friendly and sustainable catalytic processes. Microgels, with their unique properties, emerge as promising platforms for catalyst heterogenization. These crosslinked polymer networks exhibit tunable size, porosity, and responsiveness to external stimuli, making them ideal for encapsulating and stabilizing catalytic species. The integration of Se-containing functional groups into the microgel structure further enhances their catalytic potential, leveraging the redox properties of selenium for oxidation reactions. This bioinspired approach offers a novel route for catalyst design and contributes to the development of environmentally friendly and efficient processes.
References: 

[1] Quintavalla, A.; Carboni, D.; Sepe, C.; Mummolo, L.; Zaccheroni, N.; Lombardo, M. Towards a More Sustainable Photocatalyzed α-Arylation of Amines: Green Solvents, Catalyst Recycling and Low Loading. Adv. Synth. Catal. 2023, 365, 252-262. https://doi.org/10.1002/ADSC.202201123
https://doi.org/10.1002/adsc.202201123

[2] Fantoni, T.; Tolomelli, A.; Cabri, W. A Translation of the Twelve Principles of Green Chemistry to Guide the Development of Cross-Coupling Reactions. Catal. Today 2022, 397-399, 265-271. https://doi.org/10.1016/j.cattod.2021.09.022
https://doi.org/10.1016/j.cattod.2021.09.022

[3] Gallezot, P. Conversion of Biomass to Selected Chemical Products. Chem. Soc. Rev. 2012, 41, 1538-1558. https://doi.org/10.1039/C1CS15147A
https://doi.org/10.1039/C1CS15147A

[4] Cao, R.; Zhang, M.-Q.; Hu, C.; Xiao, D.; Wang, M.; Ma, D. Catalytic Oxidation of Polystyrene to Aromatic Oxygenates over a Graphitic Carbon Nitride Catalyst. Nat. Commun. 2022, 13, 4809. https://doi.org/10.1038/s41467-022-32510-x
https://doi.org/10.1038/s41467-022-32510-x

[5] Tu, J.; Shen, Z.; Huang, B. Light‐Induced Direct Decarboxylative Functionalization of Aromatic Carboxylic Acids. Adv. Synth. Catal. 2024, 366, 4263-4273. https://doi.org/10.1002/adsc.202400573
https://doi.org/10.1002/adsc.202400573

[6] Su, F.; Liu, Y.; Wang, L.; Cao, Y.; He, H.; Fan, K. Ga-Al Mixed‐Oxide-Supported Gold Nanoparticles with Enhanced Activity for Aerobic Alcohol Oxidation. Angew. Chemie Int. Ed. 2008, 47, 334-337. https://doi.org/10.1002/anie.200704370
https://doi.org/10.1002/anie.200704370

[7] Parlett, C. M. A.; Durndell, L. J.; Machado, A.; Cibin, G.; Bruce, D. W.; Hondow, N. S.; Wilson, K.; Lee, A. F. Alumina-Grafted SBA-15 as a High Performance Support for Pd-Catalysed Cinnamyl Alcohol Selective Oxidation. Catal. Today 2014, 229, 46-55. https://doi.org/10.1016/j.cattod.2013.11.056
https://doi.org/10.1016/j.cattod.2013.11.056

[8] Sadiq, M.; Razia; Hussain, S.; Zamin, G. Efficiency of Iron Supported on Porous Material (Prepared from Peanut Shell) for Liquid Phase Aerobic Oxidation of Alcohols. Mod. Res. Catal. 2014, 03, 35-48. https://doi.org/10.4236/mrc.2014.32006
https://doi.org/10.4236/mrc.2014.32006

[9] Luque, R.; Badamali, S. K.; Clark, J. H.; Fleming, M.; Macquarrie, D. J. Controlling Selectivity in Catalysis: Selective Greener Oxidation of Cyclohexene under Microwave Conditions. Appl. Catal. A Gen. 2008, 341, 154-159. https://doi.org/10.1016/j.apcata.2008.02.037
https://doi.org/10.1016/j.apcata.2008.02.037

[10] Clark, J. H. Catalysis for Green Chemistry. Pure Appl. Chem. 2001, 73, 103-111. https://doi.org/10.1351/pac200173010103
https://doi.org/10.1351/pac200173010103

[11] Edwards, J. K.; Hutchings, G. J. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angew. Chemie Int. Ed. 2008, 47, 9192-9198. https://doi.org/10.1002/anie.200802818
https://doi.org/10.1002/anie.200802818

[12] Hughes, M. D.; Xu, Y.-J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; et al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation under Mild Conditions. Nature 2005, 437, 1132-1135. https://doi.org/10.1038/nature04190
https://doi.org/10.1038/nature04190

[13] Rathi, A. K.; Gawande, M. B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R. S.; et al. Maghemite Decorated with Ultra-Small Palladium Nanoparticles (γ-Fe2O3-Pd): Applications in the Heck-Mizoroki Olefination, Suzuki Reaction and Allylic Oxidation of Alkenes. Green Chem. 2016, 18, 2363-2373. https://doi.org/10.1039/C5GC02264A
https://doi.org/10.1039/C5GC02264A

[14] Yokoi, T.; Yoshioka, M.; Imai, H.; Tatsumi, T. Diversification of RTH‐Type Zeolite and Its Catalytic Application. Angew. Chemie Int. Ed. 2009, 48, 9884-9887. https://doi.org/10.1002/anie.200905214
https://doi.org/10.1002/anie.200905214

[15] Pal, N.; Bhaumik, A. Mesoporous Materials: Versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations. RSC Adv. 2015, 5, 24363-24391. https://doi.org/10.1039/c4ra13077d
https://doi.org/10.1039/C4RA13077D

[16] Sugunan, S.; Paul, A. Basicity and Catalytic Activity of ZrO2−Y2O3 Mixed Oxides in the Oxidation of Cyclohexanol. React. Kinet. Catal. Lett. 1998, 65, 343-348. https://doi.org/10.1007/BF02475274
https://doi.org/10.1007/BF02475274

[17] Dong, X.-W.; Yang, Y.; Che, J.-X.; Zuo, J.; Li, X.-H.; Gao, L.; Hu, Y.-Z.; Liu, X.-Y. Heterogenization of Homogeneous Chiral Polymers in Metal-Organic Frameworks with Enhanced Catalytic Performance for Asymmetric Catalysis. Green Chem. 2018, 20, 4085-4093. https://doi.org/10.1039/C8GC01323C
https://doi.org/10.1039/C8GC01323C

[18] Adhikary, J.; Guha, A.; Chattopadhyay, T.; Das, D. Heterogenization of Three Homogeneous Catalysts: A Comparative Study as Epoxidation Catalyst. Inorganica Chim. Acta 2013, 406, 1-9. https://doi.org/10.1016/j.ica.2013.06.045
https://doi.org/10.1016/j.ica.2013.06.045

[19] Copéret, C.; Chabanas, M.; Petroff Saint‐Arroman, R.; Basset, J. Homogeneous and Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry. Angew. Chemie Int. Ed. 2003, 42, 156-181. https://doi.org/10.1002/anie.200390072
https://doi.org/10.1002/anie.200390072

[20] Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica‐Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chemie Int. Ed. 2006, 45, 3216-3251. https://doi.org/10.1002/anie.200503075
https://doi.org/10.1002/anie.200503075

[21] Saha, P. K.; Saha, S.; Koner, S. Chromotropism of Cr(Salen) Moiety in Zeolite Matrix: Synthesis, Characterization and Catalytic Activity Study of Cr(Salen)-NaY Hybrid Catalyst. J. Mol. Catal. A Chem. 2003, 203, 173-178. https://doi.org/10.1016/S1381-1169(03)00252-8
https://doi.org/10.1016/S1381-1169(03)00252-8

[22] Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chemie Int. Ed. 1999, 38, 56-77. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3C56::AID-ANIE56%3E3.0.CO;2-E
https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E

[23] Juaristi, E. Recent Developments in next Generation (S)-Proline-Derived Chiral Organocatalysts. Tetrahedron 2021, 88, 132143. https://doi.org/10.1016/j.tet.2021.132143
https://doi.org/10.1016/j.tet.2021.132143

[24] Jawale, D. V.; Fossard, F.; Miserque, F.; Geertsen, V.; Doris, E.; Gravel, E. Bimetallic Ruthenium-Rhodium Particles Supported on Carbon Nanotubes for the Hydrophosphinylation of Alkenes and Alkynes. Catal. Sci. Technol. 2022, 12, 4983-4987. https://doi.org/10.1039/D2CY00857B
https://doi.org/10.1039/D2CY00857B

[25] Yadav, J.; Dolas, A. J.; Iype, E.; Rangan, K.; Ohshita, J.; Kumar, D.; Kumar, I. Asymmetric Synthesis of Bridged N -Heterocycles with Tertiary Carbon Center through Barbas Dienamine-Catalysis: Scope and Applications. J. Org. Chem. 2021, 86, 17213-17225. https://doi.org/10.1021/acs.joc.1c02295
https://doi.org/10.1021/acs.joc.1c02295

[26] Banerjee, M.; Panjikar, P. C.; Bhutia, Z. T.; Bhosle, A. A.; Chatterjee, A. Micellar Nanoreactors for Organic Transformations with a Focus on "Dehydration" Reactions in Water: A Decade Update. Tetrahedron 2021, 88, 132142. https://doi.org/10.1016/j.tet.2021.132142
https://doi.org/10.1016/j.tet.2021.132142

[27] Chen, P.; Zhang, H.-B.; Lin, G.-D.; Hong, Q.; Tsai, K. R. Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or CO on a Ni MgO Catalyst. Carbon 1997, 35, 1495-1501. https://doi.org/10.1016/S0008-6223(97)00100-0
https://doi.org/10.1016/S0008-6223(97)00100-0

[28] Demeese, C.; Lods, C.; Buisson, D.-A.; Gravel, E.; Namboothiri, I. N. N.; Doris, E. Supramolecular Assembly of Proline Amphiphiles on Carbon Nanotubes as Heterogenized Catalyst for Enantioselective Aldol Reactions in Water. Chem. Eng. J. 2023, 476, 146702. https://doi.org/10.1016/j.cej.2023.146702
https://doi.org/10.1016/j.cej.2023.146702

[29] Kumar, R. A.; Jawale, D. V.; Oheix, E.; Geertsen, V.; Gravel, E.; Doris, E. Tailor - Made Polydiacetylene Micelles for the Catalysis of 1,3‐Dipolar Cycloadditions in Water. Adv. Synth. Catal. 2020, 362, 4425-4431. https://doi.org/10.1002/adsc.202000795
https://doi.org/10.1002/adsc.202000795

[30] Farah, J.; Gravel, E.; Doris, E.; Malloggi, F. Direct Integration of Gold-Carbon Nanotube Hybrids in Continuous-Flow Microfluidic Chips: A Versatile Approach for Nanocatalysis. J. Colloid Interface Sci. 2022, 613, 359-367. https://doi.org/10.1016/j.jcis.2021.12.178
https://doi.org/10.1016/j.jcis.2021.12.178

[31] Ziccarelli, I.; Mancuso, R.; Giacalone, F.; Calabrese, C.; La Parola, V.; De Salvo, A.; Della Ca', N.; Gruttadauria, M.; Gabriele, B. Heterogenizing Palladium Tetraiodide Catalyst for Carbonylation Reactions. J. Catal. 2022, 413, 1098-1110. https://doi.org/10.1016/j.jcat.2022.08.007
https://doi.org/10.1016/j.jcat.2022.08.007

[32] Masteri-Farahani, M.; Rahimi, M.; Hosseini, M.-S. Heterogenization of Porphyrin Complexes within the Nanocages of SBA-16: New Efficient and Stable Catalysts for the Epoxidation of Olefins. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 603, 125229. https://doi.org/10.1016/j.colsurfa.2020.125229
https://doi.org/10.1016/j.colsurfa.2020.125229

[33] Andreu, C.; del Olmo, M.; Asensio, G. Effect of Addition of Lewis/Brönsted Acids in the Asymmetric Aldol Condensation Catalyzed by Trifluoroacetate Salts of Proline-Based Dipeptides. Tetrahedron 2012, 68, 7966-7972. https://doi.org/10.1016/j.tet.2012.07.006
https://doi.org/10.1016/j.tet.2012.07.006

[34] Al-Hunaiti, A.; Al-Said, N.; Halawani, L.; Haija, M. A.; Baqaien, R.; Taher, D. Synthesis of Magnetic CuFe2O4 Nanoparticles as Green Catalyst for Toluene Oxidation under Solvent-Free Conditions. Arab. J. Chem. 2020, 13, 4945-4953. https://doi.org/10.1016/j.arabjc.2020.01.017
https://doi.org/10.1016/j.arabjc.2020.01.017

[35] Sakthivel, A.; Badamali, S. K.; Selvam, P. Catalytic Oxidation of Alkylaromatics over Mesoporous (Cr)MCM-41. Catal. Letters 2002, 80, 73-76. https://doi.org/10.1023/A:1015330827806
https://doi.org/10.1023/A:1015330827806

[36] Kaur, M.; Ratan, A.; Kunchakara, S.; Dutt, M.; Singh, V. Cr Doped MCM-41 Nanocomposites: An Efficient Mesoporous Catalyst Facilitating Conversion of Toluene to Benzaldehyde, an Industrial Precursor. J. Porous Mater. 2019, 26, 239-246. https://doi.org/10.1007/s10934-018-0642-z
https://doi.org/10.1007/s10934-018-0642-z

[37] Sadiq, M.; Saeed, K.; Sadiq, S.; Munir, S.; Khan, M. Liquid Phase Oxidation of Cinnamyl Alcohol to Cinnamaldehyde Using Multiwall Carbon Nanotubes Decorated with Zinc-Manganese Oxide Nanoparticles. Appl. Catal. A Gen. 2017, 539, 97-103. https://doi.org/10.1016/j.apcata.2017.04.007
https://doi.org/10.1016/j.apcata.2017.04.007

[38] Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. Metal Organic Framework Catalysis: Quo Vadis ? ACS Catal. 2014, 4, 361-378. https://doi.org/10.1021/cs400959k
https://doi.org/10.1021/cs400959k

[39] Chen, S.-C.; Lu, S.-N.; Tian, F.; Li, N.; Qian, H.-Y.; Cui, A.-J.; He, M.-Y.; Chen, Q. Highly Selective Aerobic Oxidation of Alcohols to Aldehydes over a New Cu(II)-Based Metal-Organic Framework with Mixed Linkers. Catal. Commun. 2017, 95, 6-11. https://doi.org/10.1016/j.catcom.2017.02.024
https://doi.org/10.1016/j.catcom.2017.02.024

[40] Mahdavi, V.; Mardani, M. Preparation of Manganese Oxide Immobilized on SBA-15 by Atomic Layer Deposition as an Efficient and Reusable Catalyst for Selective Oxidation of Benzyl Alcohol in the Liquid Phase. Mater. Chem. Phys. 2015, 155, 136-146. https://doi.org/10.1016/j.matchemphys.2015.02.011
https://doi.org/10.1016/j.matchemphys.2015.02.011

[41] Deng, Y.-Q.; Zhang, T.; Au, C.-T.; Yin, S.-F. Liquid-Phase Catalytic Oxidation of p-Chlorotoluene to p-Chlorobenzaldehyde over Manganese Oxide Octahedral Molecular Sieves. Appl. Catal. A Gen. 2013, 467, 117-123. https://doi.org/10.1016/j.apcata.2013.07.015
https://doi.org/10.1016/j.apcata.2013.07.015

[42] Krüger, A. J. D.; Köhler, J.; Cichosz, S.; Rose, J. C.; Gehlen, D. B.; Haraszti, T.; Möller, M.; De Laporte, L. A Catalyst-Free, Temperature Controlled Gelation System for in-Mold Fabrication of Microgels. Chem. Commun. 2018, 54, 6943-6946. https://doi.org/10.1039/C8CC02478B
https://doi.org/10.1039/C8CC02478B

[43] Masaki, Y.; Yamazaki, K.; Kawai, H.; Yamada, T.; Itoh, A.; Arai, Y.; Furukawa, H. Recyclable Polymeric π-Acid Catalyst Effective on Mannich-Type Reaction in Water. Chem. Pharm. Bull. 2006, 54, 591-593. https://doi.org/10.1248/cpb.54.591
https://doi.org/10.1248/cpb.54.591

[44] Pich, A. R. W. Chemical Design of Responsive Microgels, 1st ed., Vol. 1; 2011.
https://doi.org/10.1007/978-3-642-16379-1

[45] Dai, Z.; Ngai, T. Microgel Particles: The Structure‐Property Relationships and Their Biomedical Applications. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2995-3003. https://doi.org/10.1002/pola.26698
https://doi.org/10.1002/pola.26698

[46] Kratz, K.; Hellweg, T.; Eimer, W. Structural Changes in PNIPAM Microgel Particles as Seen by SANS, DLS, and EM Techniques. Polymer (Guildf) 2001, 42, 6631-6639. https://doi.org/10.1016/S0032-3861(01)00099-4
https://doi.org/10.1016/S0032-3861(01)00099-4

[47] Dalmont, H.; Pinprayoon, O.; Saunders, B. R. Study of PH-Responsive Microgels Containing Methacrylic Acid:  Effects of Particle Composition and Added Calcium. Langmuir 2008, 24, 2834-2840. https://doi.org/10.1021/la703597a
https://doi.org/10.1021/la703597a

[48] Zhang, Q. M.; Wang, W.; Su, Y.-Q.; Hensen, E. J. M.; Serpe, M. J. Biological Imaging and Sensing with Multiresponsive Microgels. Chem. Mater. 2016, 28, 259-265. https://doi.org/10.1021/acs.chemmater.5b04028
https://doi.org/10.1021/acs.chemmater.5b04028

[49] Karg, M.; Pich, A.; Hellweg, T.; Hoare, T.; Lyon, L. A.; Crassous, J. J.; Suzuki, D.; Gumerov, R. A.; Schneider, S.; Potemkin, I. I.; et al. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir 2019, 35, 6231-6255. https://doi.org/10.1021/acs.langmuir.8b04304
https://doi.org/10.1021/acs.langmuir.8b04304

[50] Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core-Shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angew. Chemie Int. Ed. 2006, 45, 813-816. https://doi.org/10.1002/anie.200502731
https://doi.org/10.1002/anie.200502731

[51] Schild, H. G. Poly(N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163-249. https://doi.org/10.1016/0079-6700(92)90023-R
https://doi.org/10.1016/0079-6700(92)90023-R

[52] Du, J.; Lu, H. Polymeric Micelles. In Encyclopedia of Polymer Science and Technology; Wiley, 2012.
https://doi.org/10.1002/0471440264.pst547

[53] Cortez-Lemus, N. A.; Licea-Claverie, A. Poly(N-Vinylcaprolactam), a Comprehensive Review on a Thermoresponsive Polymer Becoming Popular. Prog. Polym. Sci. 2016, 53, 1-51. https://doi.org/10.1016/j.progpolymsci.2015.08.001
https://doi.org/10.1016/j.progpolymsci.2015.08.001

[54] Schmid, A. J.; Dubbert, J.; Rudov, A. A.; Pedersen, J. S.; Lindner, P.; Karg, M.; Potemkin, I. I.; Richtering, W. Multi-Shell Hollow Nanogels with Responsive Shell Permeability. Sci. Rep. 2016, 6, 22736. https://doi.org/10.1038/srep22736
https://doi.org/10.1038/srep22736

[55] Arif, M.; Rauf, A.; Akhter, T. A Review on Ag Nanoparticles Fabricated in Microgels. RSC Adv. 2024, 14, 19381-19399. https://doi.org/10.1039/D4RA02467B
https://doi.org/10.1039/D4RA02467B

[56] Chang, K.; Yan, Y.; Zhang, D.; Xia, Y.; Chen, X.; Lei, L.; Shi, S. Synergistic Bonding of Poly(N-Isopropylacrylamide)-Based Hybrid Microgels and Gold Nanoparticles Used for Temperature-Responsive Controllable Catalysis of p-Nitrophenol Reduction. Langmuir 2023, 39, 2408-2421. https://doi.org/10.1021/acs.langmuir.2c03236
https://doi.org/10.1021/acs.langmuir.2c03236

[57] Arif, M. Noble Metal Nanoparticles Encapsulated Smart Microgels: A Critical Review. J. Mol. Liq. 2024, 403, 124869. https://doi.org/10.1016/j.molliq.2024.124869
https://doi.org/10.1016/j.molliq.2024.124869

[58] Pany, B.; Majumdar, A. G.; Bhat, S.; Si, S.; Yamanaka, J.; Mohanty, P. S. Polymerized Stimuli-Responsive Microgel Hybrids of Silver Nanoparticles as Efficient Reusable Catalyst for Reduction Reaction. Heliyon 2024, 10, e26244. https://doi.org/10.1016/j.heliyon.2024.e26244
https://doi.org/10.1016/j.heliyon.2024.e26244

[59] Biffis, A.; Cunial, S.; Spontoni, P.; Prati, L. Microgel-Stabilized Gold Nanoclusters: Powerful "Quasi-Homogeneous" Catalysts for the Aerobic Oxidation of Alcohols in Water. J. Catal. 2007, 251, 1-6. https://doi.org/10.1016/j.jcat.2007.07.024
https://doi.org/10.1016/j.jcat.2007.07.024

[60] Jiang, L.; Ao, Q.; Tong, X.; Lv, X.; Song, Y.; Tang, J. A Biocatalytic Cascade in Enzyme/Metal Continuous-Microflow Microgel with Stable Intermediate Channel for Point-of-Care Biosensing. Biosens. Bioelectron. 2024, 248, 115965. https://doi.org/10.1016/j.bios.2023.115965.
https://doi.org/10.1016/j.bios.2023.115965

[61] Ma, X.; Kong, S.; Li, Z.; Zhen, S.; Sun, F.; Yang, N. Effect of Cross-Linking Density on the Rheological Behavior of Ultra-Soft Chitosan Microgels at the Oil-Water Interface. J. Colloid Interface Sci. 2024, 672, 574-588. https://doi.org/10.1016/j.jcis.2024.06.026
https://doi.org/10.1016/j.jcis.2024.06.026

[62] Piera, J.; Bäckvall, J. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer-A Biomimetic Approach. Angew. Chemie Int. Ed. 2008, 47, 3506-3523. https://doi.org/10.1002/anie.200700604
https://doi.org/10.1002/anie.200700604

[63] Rostami, A.; Akradi, J. A Highly Efficient, Green, Rapid, and Chemoselective Oxidation of Sulfides Using Hydrogen Peroxide and Boric Acid as the Catalyst under Solvent-Free Conditions. Tetrahedron Lett. 2010, 51, 3501-3503. https://doi.org/10.1016/j.tetlet.2010.04.103
https://doi.org/10.1016/j.tetlet.2010.04.103

[64] Organoselenium Chemistry; Wirth, T., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; Vol. 208.

[65] Organoselenium Chemistry; Wirth, T., Ed.; Wiley, 2011.

[66] Hori, T.; Sharpless, K. B. Synthetic Applications of Arylselenenic and Arylseleninic Acids. Conversion of Olefins to Allylic Alcohols and Epoxides. J. Org. Chem. 1978, 43, 1689-1697. https://doi.org/10.1021/jo00403a015
https://doi.org/10.1021/jo00403a015

[67] Flohé, L.; Loschen, G.; Günzler, W. A.; Eichele, E. Glutathione Peroxidase, V. The Kinetic Mechanism. Hoppe-Seyler's Zeitschrift für Physiol. Chemie 1972, 353, 987-1000. https://doi.org/10.1515/bchm2.1972.353.1.987
https://doi.org/10.1515/bchm2.1972.353.1.987

[68] Prabhakar, R.; Vreven, T.; Morokuma, K.; Musaev, D. G. Elucidation of the Mechanism of Selenoprotein Glutathione Peroxidase (GPx)-Catalyzed Hydrogen Peroxide Reduction by Two Glutathione Molecules:  A Density Functional Study. Biochemistry 2005, 44, 11864-11871. https://doi.org/10.1021/bi050815q
https://doi.org/10.1021/bi050815q

[69] Alberto, E. E.; Braga, A. L. Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. In Selenium and Tellurium Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 251-283.
https://doi.org/10.1007/978-3-642-20699-3_11

[70] Nebesnyi, R.; Ivasiv, V.; Pikh, Z.; Kharandiuk, T.; Shpyrka, I.; Voronchak, T.; Shatan, A. B. Low Temperature Acrolein to Acrylic Acid Oxidation with Hydrogen Peroxide on Se-Organic Catalysts. Chem. Chem. Technol. 2019, 13, 38-45. https://doi.org/10.23939/chcht13.01.038
https://doi.org/10.23939/chcht13.01.038

[71] Rangraz, Y.; Nemati, F.; Elhampour, A. Diphenyl Diselenide Immobilized on Magnetic Nanoparticles: A Novel and Retrievable Heterogeneous Catalyst in the Oxidation of Aldehydes under Mild and Green Conditions. J. Colloid Interface Sci. 2018, 509, 485-494. https://doi.org/10.1016/j.jcis.2017.09.034
https://doi.org/10.1016/j.jcis.2017.09.034

[72] Stadtman, T. C. Selenium Biochemistry. Annu. Rev. Biochem. 1990, 59, 111-127. https://doi.org/10.1146/annurev.bi.59.070190.000551
https://doi.org/10.1146/annurev.bi.59.070190.000551

[73] Tan, K. H.; Xu, W.; Stefka, S.; Demco, D. E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V. S.; Potemkin, I. I.; Pich, A. Selenium - Modified Microgels as Bio‐Inspired Oxidation Catalysts. Angew. Chemie Int. Ed. 2019, 58, 9791-9796. https://doi.org/10.1002/anie.201901161
https://doi.org/10.1002/anie.201901161

[74] Kharandiuk, T.; Tan, K. H.; Kubitska, I.; Al Enezy-Ulbrich, M. A.; Ivasiv, V.; Nebesnyi, R.; Potemkin, I. I.; Pich, A. Synthesis of Acrylic Acid and Acrylic Esters via Oxidation and Oxidative Alkoxylation of Acrolein under Mild Conditions with Selenium-Modified Microgel Catalysts. React. Chem. Eng. 2022, 7. https://doi.org/10.1039/d2re00252c
https://doi.org/10.1039/D2RE00252C