Дослідження впливу технічного лігніну на властивості дорожнього бітуму
| Attachment | Size |
|---|---|
| 552.96 KB |
Keywords:
[1] Leal Silva, J.F.; Nakasu, P.; Costa, A.C.D.; Maciel Filho, R.; Rabelo, S.C. Techno-Economic Analysis of the Production of 2G Ethanol and Technical Lignin via a Protic Ionic Liquid Pretreatment of Sugarcane Bagasse. Ind. Crops Prod. 2022, 189, 115788. https://doi.org/10.1016/j.indcrop.2022.115788
[2] Schwaighofer, M.: Königsberger, M.: Zelaya-Lainez, L.; Lukacevic, M.; Serna-Loaiza, S.; Harasek, M.; Füssl, J. The Viscoelastic Behavior of Lignin: Quantification Through Nanoindentation Relaxation Testing on Hot-Pressed Technical Lignin Samples from Various Origins. Mech. Mater. 2024, 188, 104864. https://doi.org/10.1016/j.mechmat.2023.104864
[3] Jeffri, N.I.; Rawi, N.F.M.; Kassim, M.H.B.M.; Abdullah, C.K. Unlocking the Potential: Evolving Role of Technical Lignin in Diverse Applications and Overcoming Challenges. Int. J. Biol. Macromol. 2024, 274, 133506. https://doi.org/10.1016/j.ijbiomac.2024.133506
[4] Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C. Efficient and Environmentally Friendly Techniques for Extracting Lignin from Lignocellulose Biomass and Subsequent Uses: A Review. Clean. Mater. 2024, 13, 100253. https://doi.org/10.1016/j.clema.2024.100253
[5] Pandit, S.; Sharma, P.; Prakash, A.; Lal, B.; Bhuyan, R.; Ahmad, I.; Kuila, A. A Comprehensive Review on Technical Lignin, Lignin Hydrogels, Properties, Preparation, Applications & Challenges in Lab to Market Transition. Ind. Crop. Prod. 2024, 211, 118262. https://doi.org/10.1016/j.indcrop.2024.118262
[6] Kazzaz, A.E.; Fatehi, P. Technical Lignin and its Potential Modification Routes: A Mini-Review. Ind. Crop. Prod. 2020, 154, 112732. https://doi.org/10.1016/j.indcrop.2020.112732
[7] Soltanian, S.; Aghbashlo, M.; Almasi, F.; Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Ok, Y.S.; Lam, S.S.; Tabatabaei, M. A Critical Review of the Effects of Pretreatment Methods on the Exergetic Aspects of Lignocellulosic Biofuels. Energy Convers. Manag. 2020, 212, 112792. https://doi.org/10.1016/j.enconman.2020.112792
[8] Gujjala, L.K.S.; Kim, J.; Won, W. Technical Lignin to Hydrogels: An Eclectic Review on Suitability, Synthesis, Applications, Challenges and Future Prospects. J. Clean. Prod. 2022, 363, 132585. https://doi.org/10.1016/j.jclepro.2022.132585
[9] Wang, C.; Kelley, S.S.; Venditti, R.A. 2016. Lignin‐Based Thermoplastic Materials. ChemSusChem. 2016, 9, 770–783. https://doi.org/10.1002/cssc.201501531
[10] Lange, H.; Decina, S.; Crestini, C. Oxidative Upgrade of Lignin-Recent Routes Reviewed. Eur. Polym. J. 2013, 49, 1151–1173. https://doi.org/10.1016/j.eurpolymj.2013.03.002
[11] Tribot, A.; Amer, G.; Alio, M.A.; de Baynast, H.; Delattre, C.; Pons, A.; Mathias, J.D.; Callois, J.M.; Vial, C.; Michaud, P.; et al. Wood-Lignin: Supply, Extraction Processes and Use as Bio-Based Material. Eur. Polym. J. 2019, 112, 228–240. https://doi.org/10.1016/j.eurpolymj.2019.01.007
[12] Vishtal, A.G.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. Bioresour. 2011, 6, 3547–3568. http://dx.doi.org/10.15376/biores.6.3.3547-3568
[13] Wang, S.; Shen, Q.; Su, S.; Lin, J.; Song, G. The Temptation from Homogeneous Linear Catechyl Lignin. Trends Chem. 2022, 4, 948–961. https://doi.org/10.1016/j.trechm.2022.07.008
[14] Jin, Y.; Lin, J.; Cheng, Y.; Lu, C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. Materials 2021, 14, 3378. https://doi.org/10.3390/ma14123378
[15] Sanchez, L.M.; Hopkins, A.K.; Espinosa, E.; Larraneta, E.; Malinova, D.; McShane, A.N.; Domínguez-Robles, J.; Rodríguez, A. Antioxidant Cellulose Nanofibers/Lignin-Based Aerogels: A Potential Material for Biomedical Applications. Chem.Biol.Technol.Agric. 2023, 10, 72. https://doi.org/10.1186/s40538-023-00438-z
[16] Fazeli, M.; Mukherjee, S.; Baniasadi, H.; Abidnejad, R.; Mujtaba, M.; Lipponen, J.; Seppala, J.; Rojas, J.O. Lignin Beyond the status quo: Recent and Emerging Composite Applications. Green Chem. 2024, 26, 593–630. https://doi.org/10.1039/D3GC03154C
[17] Ren, S.; Liu, X.; Zhang, Y.; Lin, P.; Apostolidis, P.; Erkens, S.; Xu, J. Multi-Scale Characterization of Lignin Modified Bitumen Using Experimental and Molecular Dynamics Simulation Methods. Constr. Build. Mater. 2021, 287, 123058. https://doi.org/10.1016/j.conbuildmat.2021.123058
[18] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
[19] Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574–591. https://doi.org/10.23939/chcht17.03.574
[20] Wu, J.; Liu, Q.; Wang, C.; Wu, W.; Han, W. Investigation of Lignin as an Alternative Extender of Bitumen for Asphalt Pavements. J. Clean. Prod. 2021, 283, 124663. https://doi.org/10.1016/j.jclepro.2020.124663
[21] He, B.; Xiao, Y.; Li, Y.; Fu, M.; Yu, J.; Zhu, L. Preparation and Characterization of Lignin Grafted Layered Double Hydroxides for Sustainable Service of Bitumen under Ultraviolet Light. J. Clean. Prod. 2022, 350, 131536. https://doi.org/10.1016/j.jclepro.2022.131536
[22] Gaudenzi, E.; Cardone, F.; Lu, X.; Canestrari, F. Chemical and Rheological Analysis of Unaged and Aged Bio-Extended Binders Containing Lignin. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 947–963. https://doi.org/10.1016/j.jtte.2023.05.005
[23] Norgbey, E.; Huang, J.; Hirsch, V.; Liu, W.J.; Wang, M.; Ripke, O.; Nkrumah, P.N. Unravelling the Efficient Use of Waste Lignin as a Bitumen Modifier for Sustainable Roads. Constr. Build. Mater. 2020, 230, 116957. https://doi.org/10.1016/j.conbuildmat.2019.116957
[24] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
[25] Smyrnov, V. O.; Biletskiy, V. S. Flotatsiyni metody zbahachennya korysnykh kopalyn; Skhidnyy vydavnychyy dim: Donetsk, 2010. ISBN: 978-966-317-054-1.
[26] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
[27] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
[28] Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. ChemEngineering 2024, 8, 27. https://doi.org/10.3390/chemengineering8020027
[29] EN 13398:2018; Bitumen and Bituminous Binders. Determination of the Elasticity. iTeh: Newark, NJ, USA, 2019.
[30] DSTU 8787:2018; National Standard of Ukraine; Bitumen and Bituminous Binders. Determination of Adhesion with Crushed Stone. SE UkrNDNC: Kyiv, Ukraine, 2018.
[31] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.
[32] DSTU 9116:2021, Bitum ta bitumni viazhuchi. Bitumy dorozhni, modyfikovani polimeramy. SE UkrNDNC: Kyiv, Ukraine, 2021. P15.
[33] DSTU 9133:2021, Bitum ta bitumni viazhuchi. Bitumy dorozhni, modyfikovani kompleksom dobavok. SE UkrNDNC: Kyiv, Ukraine, 2021. P13.