Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Розробка мембран на основі полівініліденфториду для літієвих акумуляторів

Leonid Kovalenko1, Ivan Lisovskyi1, Volodymyr Khomenko2, Dmytro Patlun2, Oleksandr Potapenko3, Anatolii Belous1
Affiliation: 
1 V. I. Vernadsky Institute of General and Inorganic Chemistry NAS Ukraine, 32/34 Aсademiс Palladin Avenue, Kyiv 03142, Ukraine 2 Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenka St., Kyiv 01011, Ukraine 3 Joint Department of Electrochemical Energy Systems NAS of Ukraine, 38 А Akademika Vernadsʹkoho Boulevard, Kyiv 03142, Ukraine i-lisovskii@i.ua
DOI: 
https://doi.org/10.23939/chcht19.02.270
AttachmentSize
PDF icon full_text.pdf374.01 KB
Abstract: 
Досліджено два методи отримання літій-провідних полімерних плівок на основі полівініліденфториду (ПВДФ): насичення діелектричної плівки ПВДФ літій-провідним розчином і введення літій-провідного розчину в розчин ПВДФ з подальшим виготовленням літій-провідної плівки. Проведено комплекс електрофізичних досліджень властивостей запропонованого гель-полімерного електроліту в широкому температурному (20-70 ℃) і частотному (0,1 Гц–32 МГц) діапазонах. Показано, що макети літій-іонних акумуляторів, побудовані з використанням розробленої мембрани, демонструють кращі характеристики та вищу стабільність упродовж заряд/розрядного циклування, ніж елементи з комерційним сепаратором Celgard 2400.
References: 

[1] Chen, W.; Liang, J.; Yang, Z. Li, G. A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond. Energy Procedia 2019, 158, 4363–4368. https://doi.org/10.1016/j.egypro.2019.01.783
[2] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Markarashvili, E.; Tatrishvili, T. Interpenetrating Network on the Basis of Methylcyclotetrasiloxane Matrix. Chem. Chem. Technol. 2019, 13, 64–70. https://doi.org/10.23939/chcht13.01.064
[3] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E. Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix. Chem. Chem. Technol. 2021, 15, 198–204. https://doi.org/10.23939/chcht15.02.198
[4] Rollo-Walker, G.; Malic, N.; Wang, X.; Chiefari, J.; Forsyth, M. Development and Progression of Polymer Electrolytes for Batteries: Influence of Structure and Chemistry. Polymers 2021, 13, 4127. https://doi.org/10.3390/polym13234127
[5] Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini S.; Reinhart, G. All-Solid-State Lithium-Ion and Lithium Metal Batteries–Paving the Way to Large-Scale Production. J. Power Sources 2018, 382, 160–175. https://doi.org/10.1016/j.jpowsour.2018.02.062
[6] Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3, 57–94. https://doi.org/10.1016/j.matt.2020.03.015
[7] Wang, J.; Ge, B.; Li, H.; Yang, M.; Wang, J.; Liu, D.; Fernandez, C.; Chen, X.; Peng, Q. Challenges and Progresses of Lithium-Metal Batteries. J. Chem. Eng. 2021, 420, 129739. https://doi.org/10.1016/j.cej.2021.129739
[8] Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. Polymers 2018, 10, 1237. https://doi.org/10.3390/polym10111237
[9] Wang, X.; Hao, X.; Xia, Y.; Liang, Y.; Xia, X.; Tu, J. A Polyacrylonitrile (PAN)-Based Double-Layer Multifunctional Gel Polymer Electrolyte for Lithium-Sulfur Batteries. J. Membr. Sci. 2019, 582, 37–47. https://doi.org/10.1016/j.memsci.2019.03.048
[10] Hosseinioun, A.; Nürnberg, P.; Schönhoff, M.; Diddens, D.; Paillard, E. Improved Lithium Ion Dynamics in Crosslinked PMMA Gel Polymer Electrolyte. RSC Advances 2019, 9, 27574–27582. https://doi.org/10.1039/C9RA05917B
[11] Sashmitha, K.; Rani, M.U. A Comprehensive Review of Polymer Electrolyte for Lithium-Ion Battery. Polym. Bull. 2023, 80, 89–135. https://doi.org/10.1007/s00289-021-04008-x
[12] Barbosa, J.C.; Correia, D.M.; Fernández, E.M.; Fidalgo-Marijuan, A.; Barandika, G.; Gonçalves, R.; Ferdov, S.; de Zea Bermudez, V.; Costa, C.M.; Lanceros-Mendez, S. High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Appl. Mater. Interfaces 2021, 13, 48889–48900. https://doi.org/10.1021/acsami.1c15209
[13] Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-based Batteries and Beyond. Green Energy Environ. 2016, 1, 18–42. https://doi.org/10.1016/j.gee.2016.04.006
[14] Prasanth, R.; Shubha, N.; Hng, H.H.; Srinivasan, M. Effect of Poly(Ethylene oxide) on Ionic Conductivity and Electrochemical Properties of Poly(Vinylidenefluoride) Based Polymer Gel Electrolytes Prepared by Electrospinning for Lithium Ion Batteries. J. Power Sources 2014, 245, 283–291. https://doi.org/10.1016/j.jpowsour.2013.05.178
[15] Neuhaus, J.; von Harbou, E.; Hasse, H. Physico-chemical Properties of Solutions of Lithium bis (Fluorosulfonyl) Imide (LiFSI) in Dimethyl Carbonate, Ethylene Carbonate, and Propylene Carbonate. J. Power Sources 2018, 394, 148–159. https://doi.org/10.1016/j.jpowsour.2018.05.038
[16] Uchida, S.; Kiyobayashi, T. What Differentiates the Transport Properties of Lithium Electrolyte in Ethylene Carbonate Mixed with Diethylcarbonate from Those Mixed with Dimethylcarbonate? J. Power Sources 2021, 511, 230423. https://doi.org/10.1016/j.jpowsour.2021.230423
[17] Hall, D.S.; Self, J.; Dahn, J.R. Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate. J. Phys. Chem. C 2015, 119, 22322–22330. https://doi.org/10.1021/acs.jpcc.5b06022
[18] Petibon, R.; Harlow, J.; Le, D.B.; Dahn, J.R. The Use of Ethyl Acetate and Methyl Propanoate in Combination with Vinylene Carbonate as Ethylene Carbonate-Free Solvent Blends for Electrolytes in Li-Ion Batteries. Electrochim. Acta 2015, 154, 227–234. https://doi.org/10.1016/j.electacta.2014.12.084
[19] Chen, R.; Bresser, D.; Saraf, M.; Gerlach, P.; Balducci, A.; Kunz, S.; Schröder, D.; Passerini S.; Chen, J. A Comparative Review of Electrolytes for Organic‐Material‐Based Energy‐Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem. 2020, 13, 2205–2219. https://doi.org/10.1002%2Fcssc.201903382
[20] Daubert, J.S.; Afroz, T.; Borodin, O.; Seo, D.M.; Boyle, P.D.; Henderson, W.A. Solvate Structures and Computational/Spectroscopic Characterization of LiClO4 Electrolytes. J. Phys. Chem. C. 2022, 126, 14399–14412. https://doi.org/10.1021/acs.jpcc.2c03805
[21] Kamal, F.Z.; Hameed, N.J.; Salim, E.T.; Gopinath, S.C. Review on the Physicl Properties of Polyethylene Oxide. Engineering and Technology Journal 2023, 41, 1220–1231. https://doi.org/10.30684/etj.2023.139937.1447
[22] Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K. Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chem. Eur. J. 2011, 17, 14326–14346. https://doi.org/10.1002/chem.201101486
[23] Marom, R.; Haik, O.; Aurbach, D.; Halalay, I.C. Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries. J. Electrochem. Soc. 2010, 157, A972–A983. https://doi.org/10.1149/1.3447750
[24] Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. A Comprehensive Review of Lithium Salts and Beyond for Rechargeable Batteries: Progress and Perspectives. Mater. Sci. Eng. R Rep. 2018, 134, 1–21. https://doi.org/10.1016/j.mser.2018.07.001
[25] Shi, X.; Ma, N.; Wu, Y.; Lu, Y.; Xiao, Q.; Li, Z.; Lei, G. Fabrication and Electrochemical Properties of LATP/PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery. Solid State Ion. 2018, 325, 112–119. https://doi.org/10.1016/j.ssi.2018.08.010
[26] Niitani, T.; Shimada, M.; Kawamura, K.; Dokko, K.; Rho, Y.-H.; Kanamura, K. Synthesis of Li +  Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure. Electrochem. Solid-State Lett. 2005, 8, A385-A388. https://doi.org/10.1149/1.1940491
[27] Lisovskyi, I.V.; Solopan, S.O.; Belous, A.G.; Khomenko, V.G.; Barsukov, V.Z. An Effective Modification of LiNi0.6Co0.2Mn0.2O2 with Li1.3Al0.3Ti1.7(PO4)3 as a High-Performance Cathode Material for Li-ion Batteries. J. Appl. Electrochem. 2022, 52, 1701–1713. https://doi.org/10.1007/s10800-022-01736-4
[28] Rahimpour, A.; Madaeni, S.S.; Zereshki, S.; Mansourpanah, Y. Preparation and Characterization of Modified Nano-Porous PVDF Membrane with High Antifouling Property Using UV Photo-Grafting. Appl. Surf. Sci. 2009, 255, 7455–7461. https://doi.org/10.1016/j.apsusc.2009.04.021
[29] Gu, S.; He, G.; Wu, X.; Hu, Z.; Wang, L.; Xiao, G.; Peng, L. Preparation and Characterization of poly(Vinylidene fluoride)/sulfonated poly(Phthalazinone ether sulfone ketone) Blends for Proton Exchange Membrane. J. Appl. Polym. Sci. 2010, 116, 852–860. https://doi.org/10.1002/app.31547