Physico-Chemical Study on the Mechanism of Interaction Between Divalent and Trivalent Iron Double Oxide Nanoparticles With Fibrillar Protein-Gelatin

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Iryna Tsykhanovska1, Tetiana Lazarieva1, Olexandr Alexandrov1, Mykola Riabchykov2, Alla Koval3, Oksana Bryzytska4
Affiliation: 
1 V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine 2 Lutsk National Technical University, 75 Lvivska St., Lutsk 43018, Ukraine 3 National University of Pharmacy, 53 H. Skovorody St., Kharkiv 61002, Ukraine 4 PIHE "Kharkiv International Medical University", 38 Molochna St., Kharkiv 61001, Ukraine oksanabrizi69@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf849.88 KB
Abstract: 
The study investigates the interaction mechanism between ferrum(II, III) oxide (Fe₃O₄) nanoparticles and the fibrillar protein gelatin (Gel) using a set of physicochemical methods. For the first time, it was established that the formation of a stable intermolecular complex is due to the amphiphilic and clusterophilic properties of Fe₃O₄ nanoparticles, their ability to polarize, electrostatic interactions, and the formation of supramolecular structures. Absorption in the region of 260 nm (UV-Vis spectroscopy) indicates the formation of plasmon resonance in the NPFe₃O₄/Gel system. Dynamic Light Scattering (DLS) revealed an average hydrodynamic particle diameter of approximately 79.0 nm, which is consistent with X-ray diffraction (XRD) data and confirms the chemisorption of the Gel protein on the surface of Fe₃O₄ nanoparticles. The work has scientific novelty in understanding the specifics of biopolymer binding with metal oxide nanostructures.
References: 

[1] Chavali1, M.S.; Nikolova. M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Applied Sciences 2019, 1, 607. https://doi.org/10.1007/s42452-019-0592-3
[2] Tsykhanovska, I.; Evlash, V.; Oleksandrov, O.; Gontar, T. Mechanism of Fat-Binding and Fat-Contenting of the Nanoparticles of a Food Supplement on the Basis of Double Oxide of Two- and Trivalent Iron. Ukr. Food J. 2018, 7, 702–715. https://doi.org/10.24263/2304-974X-2018-7-4-14
[3] Drmota, A.; Kosak, A.; Znidarsik A. А Mechanism for the Adsorption of Carboxylic Acids onto the Surface of Magnetic Nanoparticles. Materials and technology 2008, 42, 79–83.
[4] Li, J.; Pylypchuk, I.; Johansson, D.; Kessler, V.; Seisenbaeva, G. Self-Assembly of Plant Protein Fibrils Interacting with Superparamagnetic Iron Oxide Nanoparticles. Sci. Rep. 2019, 9, 8939. https://doi.org/10.1038/s41598-019-45437-z
[5] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Lazarieva, T.; Svidlo, K.; Gontar, T.; Yurchenko, L.; Pavlotska, L. Substantiation of the Mechanism of Interaction between Biopolymers of Rye-and-wheat Flour and the Nanoparticles of the Magnetofооd. Food Additive in Order to Improve Moisture-retaining Capacity of Dough. East.-Eur. J. Enterp. Technol. 2018, 2/11 (92), 70–80. https://doi.org/10.15587/1729-4061.2018.126358
[6] Dickinson, E. Stabilising Emulsion-Based Colloidal Structures with Mixed Food Ingredients. J. Sci. Food Agric. 2013, 93, 710–721. https://doi.org/10.1002/jsfa.6013
[7] Goralchuk, A.; Gubsky, S.; Omelchenko, S.; Riabets, O.; Grinchenko, O.; Fedak, N.; Kotlyar, O.; Cheremska, T.; Skrynnik, V. Impact of Added Food Ingredients on Foaming and Texture of the Whipped Toppings: A Chemometric Analysis. Eur. Food Res. Technol. 2020, 246, 1955–1970. https://doi.org/10.1007/s00217-020-03547-3
[8] Harper, W.J.; Hewitt, S.A.; Huffman, L.M. Model Food Systems and Protein Functionality. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2019; pp. 573–598. https://doi.org/10.1016/B978-0-12-815251-5.00015-3
[9] Sanguansri, P.; Augustin, M.A. Nanoscale Materials Development—A Food Industry Perspective. Trends Food Sci. Technol. 2006, 17, 547–556. https://doi.org/10.1016/j.tifs.2006.04.010
[10] Tsykhanovska, I.; Stabnikova, О.; Gubsky, S. Spectroscopic Studies of Interaction of Iron Oxide Nanoparticles with Ovalbumin Molecules. Mater. Proc. 2022, 9, 1–8. https://doi.org/10.3390/materproc2022009002
[11] Mikhailov, O.V. Gelatin as It Is: History and Modernity. Int. J. Mol. Sci. 2023, 24, 3583. https://doi.org/10.3390/ijms24043583
[12] Thiruvengadam, M.; Rajakumar G.; Chung M. Nanotechnology: Current Uses and Future Applications in the Food Industry. 3 Biotech. 2018, 8, 74. https://doi.org/10.1007/s13205-018-1104-7
[13] Hansen, S. F.; Heggelund, L. R.; Besora, P. R.; Mackevica, A.; Boldrin, A.; Baun, A. Nanoproducts–what is Actually Available to European consumers? Environ. Sci.: Nano. 2016, 3, 169–180. https://doi.org/10.1039/C5EN00182J
[14] Ramachandraiah, К.; Choi, M.; Hong G. Micro- and Nano-Scaled Materials for Strategy-Based Applications in Innovative Livestock Products: A Review. Trends Food Sci. Technol. 2018, 71, 25–35. https://doi.org/10.1016/j.tifs.2017.10.017
[15] Tsykhanovska, І.; Riabchykov, М.; Alexandrov, О.; Evlash, V.; Bryzytska, O.; Gubsky, S.; Lazareva, T.; Blahyi, О. Hysico-Chemical Studies of the Interaction Mechanism of Double and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water. Chem. Chem. Technol. 2023, 17, 481–494. https://doi.org/10.23939/chcht17.03.481
[16] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T. Dissolution Kinetics of Fe3O4 Nanoparticles in the Acid Media. Chem. Chem. Technol. 2019, 13, 170–184. https://doi.org/10.23939/chcht13.02.170
[17] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T.; Shmatkov, D. The study of the interaction mechanism of linoleic acid and 1-linoleyl-2-oleoyl-3-linolenoyl-glycerol with Fe3O4 nanoparticles. Chem. Chem. Technol. 2019, 13, 303–316. https://doi.org/10.23939/chcht13.03.303
[18] Yılmaz, H.; Sanlıer, S.H. Preparation of Magnetic Gelatin Nanoparticles and Investigating the Possible Use as Chemotherapeutic Agent. Artif. Cells Nanomed. Biotechnol. 2013, 41, 69–77. https://doi.org/10.3109/21691401.2012.745863
[19] Stevens, J. S.; De Luca, A. C.; Pelendritis, M. Quantitative Analysis of Complex Amino Acids and RGD Peptides by X-ray Photoelectron Spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238–1246. https://doi.org/10.1002/sia.5261
[20] Meyer, F.; Hauschild, D.; Benkert, A.; Blum, M.; Yang, W.; Reinert, F.; Heske, C.; Zharnikov, M.; Weinhardt, L. Resonant Inelastic Soft X‑ray Scattering and X‑ray Emission Spectroscopy of Solid Proline and Proline Solutions. J. Phys. Chem. B. 2022, 126, 10185–10193. https://doi.org/10.1021/acs.jpcb.2c06557
[21] Stevie, F. A.; Donley, C. L. Introduction to Х-ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. 2020, A 38, 063204. https://doi.org/10.1116/6.0000412
[22] Baer, D.R. Guide to Making XPS Measurements on Nanoparticles. J. Vac. Sci. Technol. 2020, A 38, 031201. https://doi.org/10.1116/1.5141419
[23] Maity, D.; Kale, S. N.; Kaul-Ghanekar, R.; Xue, Jun-Min; Ding, J. Studies of Magnetite Nanoparticles Synthesized by Thermal Decomposition Ofiron (III) Acetylacetonate in tri(Ethylene glycol). J. Magn. Magn. Mater. 2009, 321, 3093–3098. https://doi.org/10.1016/j.jmmm.2009.05.020
[24] Kaznacheyev, K.; Osanna, A.; Jacobsen, C.; Plashkevych, O.; Vahtras, O.; Carravetta, V.; Hitchcock, A. P. Innershell Absorption Spectroscopy of Amino Acids. J. Phys. Chem. A. 2002, 106, 3153–3168. https://doi.org/10.1021/jp013385w
[25] Xiaoxue, Z.; Hao, W.; Anping, H.; Haiyan, X.; Yongcai, Z.; Dunbo, Yu.; Bo, W.; Hui, Ya. Synthesis of Cadmium Titanate Powders by a Sol-Gel-Hydrothermal Method. J. Mat. Sci. 2003, 38, 2353–2356. https://doi.org/10.1023/A:1023932513481
[26] Cornell, R. M.; Schertmann, U. The iron oxides: structure, properties, reactions, occurrence and uses; VCH Publishers: Weinheim, 2000; рр 142–278.
[27] Gaihre, B.; Aryal, S.; Barakat, N.A.M.; Kim, H.Y. Gelatin Stabilized Iron Oxide Nanoparticles as a Three Dimensional Template for the Hydroxyapatite Crystal Nucleation and Growth. Mater. Sci. Eng. C 2008, 28, 1297–1303. https://doi.org/10.1016/j.msec.2008.01.001
[28] Ulfa, M.; Poetry, S. D. Gelatin's Effect on Iron Oxide Nanoparticle Properties and Its Use in Thermal Regeneration for Methylene Blue Photodegradation. Bull. Chem. React. Eng. Catal. 2024, 19, 384–392. https://doi.org/10.9767/bcrec.20172
[29] Ulfa, M.; Anggreani, C. N.; Sholeha, N. A. Fine-Tuning Mesoporous Silica Properties by a Dual-Template Ratio as TiO2 Support for Dye Photodegradation Booster. Heliyon 2023, 9, e16275. https://doi.org/10.1016/j.heliyon.2023.e16275
[30] Babu, T. S. R.; Neeraja, D. A Experimental Study of Natural Admixture Effect on Conventional Concrete and High Volume Class F Flyash Blended Concrete. Case Studies in Construction Materials 2017, 6, 43–62. https://doi.org/10.1016/j.cscm.2016.09.003
[31] Farya, К.; Waheed, U.; Ahmad, K. S.; Noor, А. U.; Mujtab, H. S.; Hikmat, U.; Nawab, А.; Iqbal, М. Using Gelatin-Iron Oxide Nanoplexes as binder and Preservative for Minced Beef Meat. Journal of Xi'an Shiyou University, Natural Science Edition 2023, 19, 384–391. http://xisdxjxsu.asia
[32] Parkatzidis, K.; Kabouraki, Е.; Selimis, А.; Kaliva, М.; Ranella, А.; Farsari, М.; Vamvakaki, М. Initiator-Free, Multiphoton Polymerization of Gelatin Methacrylamide. Macromol. Mater. Eng. 2018, 303, 1800458. https://doi.org/10.1002/mame.201800458
[33] Astuti, A.I.; Soejoedono, R. D.; Saepudin, E.; Assaat, L. D.; Ivandini, T. A. Polyclonal Antibodies Production from Porcine Gelatin and its Preliminary Study for Immunosensor Applications. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 763, 012007. https://doi.org/10.1088/1757-899X/763/1/012007
[34] Aminu, М.; Mansor, B. А.; Mohd Zobir, Н.; Mohd Izham, S.; Abubakar, S. H. Effect of Gelatin-Stabilized Copper Nanoparticles on Catalytic Reduction of Methylene Blue. Nanoscale Res. Lett. 2016, 11, 438–454. https://doi.org/10.1186/s11671-016-1656-6
[35] Aguilar-Méndez, M.А.; Espinosa-Solares, Т.; Guerrero-Toledo, F. M.; Canseco-González, D.; Velázquez-Hernández, А.; Aguilar-Moreno, G. S.; Navarro-Cerónnava, Е. Synthesis And Characterisation Of Magnetite Nanoparticles Using Gelatin and Starch as Capping Agents. IET Nanobiotechnol. 2020, 14, 94–97. https://doi.org/10.1049/iet-nbt.2019.0204
[36] Dantas, M.; Tenório, H.; Lopes, T.; Pereira, H.; Marsaioli, A.; Figueiredo, I.; Santos, J. Interactions of Tetracyclines with Ovalbumin, the Main Allergen Protein from Egg White: Spectroscopic and Electrophoretic Studies. Int. J. Biol. Macromol. 2017, 102, 505–514. https://doi.org/10.1016/j.ijbiomac.2017.04.052
[37] Saragi, T.; Santika, A. S.; Permana, B.; Syakir, N.; Kartawidjaja, M.; Risdiana, R. Synthesis and Properties of Iron Oxide Particles Prepared by Hidrothermal Method. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 196, 012025. https://doi.org/10.1088/1757-899X/196/1/012025
[38] Takai, Z. I.; Mustafa, M. K.; Asman, S.; Sekak, K. A. Preparation and Characterization of Magnetite (Fe3O4) nanoparticles By Sol-Gel Method. Int. J. Nanoelectron. Mater. 2019, 12, 37–46. https://doi.org/10.11113/mjfas.v15n2019.1224
[39] Ghalenavi, H.; Hemmati-Sarapardeh, A.; Schaffie, M.; Norouzi-Apourvari, S. Application of Synthesized Fe3O4@Gelatin Nanoparticles on Interfacial Properties and Enhanced Oil Recovery. Sci. Rep. 2025, 15, 2558. https://doi.org/10.1038/s41598-024-84953-5
[40] Dung, T.T.; Danh, T. M.; Hoa, L. T. M.; Chien, D. M.; Duc, N. H. Structural and Magnetic Properties of Starch-Coated Magnetite Nanoparticles. J. Exp. Nanosci. 2009, 4, 259–267. https://doi.org/10.1080/17458080802570609
[41] Iglesias-Silva, E.; Rivas, J.; León Isidro, L.M.; López-Quintela, M.A. Synthesis of Silver-Coated Magnetite Nanoparticles. J. Non-Cryst. Solids 2007, 353, 829–831. https://doi.org/10.1016/j.jnoncrysol.2006.12.050
[42] Ottone, M.L.; Peirotti, M. B.; Deiber, J. A. Rheokinetic Model to Characterize the Maturation Process of Gelatin Solutions under Shear Flow. Food Hydrocolloids 2009, 23, 1342–1350. https://doi.org/10.1016/j.foodhyd.2008.11.011
[43] Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Comparative Study of the Structural Properties, Color, Bioactive Compounds Content and Antioxidant Capacity of Aerated Gelatin Gels Enriched with Cryoconcentrated Blueberry Juice during Storage. Polymers 2020, 12, 2769. https://doi.org/10.3390/polym12122769
[44] Pawar, N.; Bohidara, H. B. Surface Selective Binding of Nanoclay Particles to Polyampholyte Protein Chains. J. Chem. Phys. 2009, 131, 045103. https://doi.org/10.1063/1.3184803
[45] Sankhla, A.; Sharma, R.; Yadav, R. S.; Kashyap, D.; Kothari, S. L.; Kachhwaha S. Biosynthesis and Characterization of Cadmium Sulfide Nanoparticles – An Emphasis of Zeta Potential Behavior Due to Capping. Mater. Chem. Phys. 2016, 170, 44–51. https://doi.org/10.1016/j.matchemphys.2015.12.017
[46] Atefeh, S. Y.; Shiva, А. В.; Nasser, N. Porous Scaffolds with the Structure of an Interpenetrating Polymer Network Made by Gelatin Methacrylated Nanoparticle-Stabilized High Internal Phase Emulsion Polymerization Targeted for Tissue Engineering. RSC Adv. 2021, 11, 22544–22555. https://doi.org/10.1039/d1ra03333f.
[47] Masuelli, M. A.; Sansone, M. G. Hydrodynamic properties of Gelatine. Studies from intrinsic viscosity measurements. Chapter 5. Book: Products and Applications of Biopolymers; Verbeek, C. J. R., Ed.; INTECH: Croatia, 2012; рр 85–116. https://doi.org/10.5772/34401
[48] Papachrisanthou, K. The Effect of Gelatin pH and Incubation Time on the Size of Nanoparticles Manufactured by Desolvation. Honors Theses 2022, 2566. https://egrove.olemiss.edu/hon_thesis/2566
[49] Azcona, P.; Zysler, R.; Lassalle, V. Simple and Novel Strategies to Achieve Shape and Size Control of Magnetite Nanoparticles Intended for Biomedical Applications. Colloids Surf. A. 2016, 504, 320–330. https://doi.org/10.1016/j.colsurfa.2016.05.064
[50] Maestro, А.; Santini, Е.; Zabiegaj, D.; Llamas, S.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.G.; Guzman Е. Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Adv. Condens. Matter Phys. 2015, 17, 917516. https://doi.org/10.1155/2015/917516
[51] Dzwolak, W.; Kato, М.; Taniguchi, Yo. Fourier Transform Infrared Spectroscopy in High-Pressure Studies on Proteins. Biochim. Biophys. Acta - Protein Structure and Molecular Enzymology 2002, 1595, 131–144. https://doi.org/10.1016/S0167-4838(01)00340-5
[52] Klekotka, U.; Satuła. D.; Spassov S. Surfactant Dependence on Physicochemical Properties of Magnetite Nanoparticles. Colloid. Surf. A. 2018, 537, 452–459. https://doi.org/10.1016/j.colsurfa.2017.10.054
[53] Abdullah, N.H.; Shameli, K.; Abdullah, E.C. A Facile and Green Synthetic Approach Toward Fabrication of Starch-Stabilized Magnetite Nanoparticles. Chinese Chem. Lett. 2017, 28, 1590–1596. https://doi.org/10.1016/j.cclet.2017.02.015
[54] Majid, D.; Mansor, А.B.; Khorsand, Z.A.; Reza, Z.; Mohammad Н. Fabrication and Characterization of Gelatin Stabilized Silver Nanoparticles under UV-Light. Int. J. Mol. Sci. 2011, 12, 6346–6356. https://doi.org/10.3390/ijms12096346
[55] Byler, D.M.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers 1986, 25, 469–487. https://doi.org/10.1002/bip.360250307
[56] Tsykhanovska, I.; Evlash, V.; Blahyi, O. Mechanism of Water-Binding and Water-Retention of Food Additives Nanoparticles Based on Double Oxide of Two- and Trivalent Iron. Ukr. Food J. 2020, 9, 298–321. https://doi.org/10.24263/2304-974x-2020-9-2-4
[57] Tsykhanovska, I.; Evlash, V.; Alexandrov, O.; Riabchykov, M.; Lazarieva, T.; Nikulina A., Blahyi O. Chapter 1. Technology of Bakery Products Using Magnetofood as a Food Additive. In Bioenhancement and Fortification of Foods for a Healthy Diet; Paredes-López, O.; Shevchenko, O.; Stabnikov, V.; Ivanov, V., Eds; Boca Raton, 2022, pp 1–45. https://doi.org/10.1201/9781003225287