Temperature Effect on the Process of Road Bitumen Modification with Carbonized Residue from the Waste Tires Pyrolysis
| Attachment | Size |
|---|---|
| 1.63 MB |
[1] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers From it. J Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598
https://doi.org/10.1016/j.joei.2024.101598
[2] Pyshyev, S.; Lypko, Y., Demchuk. Y.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 18, 244-257. https://doi.org/10.23939/chcht18.02.244
https://doi.org/10.23939/chcht18.02.244
[3] Pyshyev, S.; Miroshnichenko, D.; Chipko, T.; Donchenko, M.; Bogoyavlenska, O.; Lysenko, L.; Prysiazhnyi, Y. Use of Lignite Processing Products as Additives to Road Petroleum Bitumen. ChemEngineering 2024, 8, 27. https://doi.org/10.3390/chemengineering8020027
https://doi.org/10.3390/chemengineering8020027
[4] Nagurskyy, A.; Grynyshyn, O.; Khlibyshyn, Yu.; Korchak, B. Use of Rubber Crumb Obtained from Waste Car Tires for the Production of Road Bitumen and Roofing Materials from Residues of Ukrainian Oil Processing. Chem. Chem. Technol. 2023, 17, 674-680. https://doi.org/10.23939/chcht17.03.674
https://doi.org/10.23939/chcht17.03.674
[5] Pyshyev, S.; Korchak, B.; Miroshnichenko, D.; Lebedev, V.; Yasinska, A.; Lypko, Yu. Obtaining New Materials from Liquid Pyrolysis Products of Waste tires for Waste Valorization. Sustainability 2025, 17, 3919. https://doi.org/10.3390/su17093919
https://doi.org/10.3390/su17093919
[6] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239-246. https://doi:10.23939/chcht15.02.239
https://doi.org/10.23939/chcht15.02.239
[7] Dewangan, A.; Ahmad, A.; Yadav, AK. Innovative Research on Waste Tire Recycling for Sustainable Biofuel Production: Assessment of its Usability on Multi-Cylinder Diesel Engine Employing Constant Injection of Oxyhydrogen and Biogas Through a Premixing Device. Int. J. Hydrog. Energy 2024, 84, 155-163. https://doi.org/10.1016/j.ijhydene.2024.08.131
https://doi.org/10.1016/j.ijhydene.2024.08.131
[8] Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159-163. https://doi.org/10.23939/chcht16.01.159
https://doi.org/10.23939/chcht16.01.159
[9] Dewangan, A.; Yadav, AK.; Mallick, A. Effect of n-Butanol and Diethyl Ether Additives on Performance and Emission Characteristics of a Diesel Engine Fuelled with Diesel-Pongamia Biodiesel Blends. J Energy Eng. 2018, 144, 04018062. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000570
https://doi.org/10.1061/(ASCE)EY.1943-7897.0000570
[10] Gunerhan, A.; Altuntas, O.; Caliskan, H. Utilization of Renewable and Sustainable Aviation Biofuels from Waste Tyres for Sustainable Aviation Transport Sector. Energy 2023, 276, 127566. https://doi.org/10.1016/j.energy.2023.127566
https://doi.org/10.1016/j.energy.2023.127566
[11] Dobrotă, D.; Dobrotă, G.; Dobrescu, T. Improvement of Waste Tyre Recycling Technology Based on a New Tyre Markings. J. Clean. Prod. 2020, 260, 121141. https://doi.org/10.1016/j.jclepro.2020.121141
https://doi.org/10.1016/j.jclepro.2020.121141
[12] Abdullah, Z.T. Remanufactured Waste Tire By-Product Valorization: Quantitative-Qualitative Sustainability-Based Assessment. Results Eng. 2024, 22, 102229. https://doi.org/10.1016/j.rineng.2024.102229
https://doi.org/10.1016/j.rineng.2024.102229
[13] Sulaiman, M.S.; Wahab, D.A.; Harun, Z.; Hishamuddin, H.; Khamis N.K.; Mansor, MRA. Preliminary Study on End-of-Life Vehicles Recycling Rate for Malaysia. Energy Rep. 2023, 9, 235-246. https://doi.org/10.1016/j.egyr.2023.05.250
https://doi.org/10.1016/j.egyr.2023.05.250
[14] Chauhan, RS.; Shrivastava, N. Neuro Fuzzy-Grey Wolf Optimization-Based Modelling and Analysis of Diesel Engine Using Tire oil with Different Proportions of 2-EHN. Fuel 2025, 384, 133849. https://doi.org/10.1016/j.fuel.2024.133849
https://doi.org/10.1016/j.fuel.2024.133849
[15] Han, J.; Li, W.; Liu, D.; Qin, L.; Chen, W.; Xing, F. Pyrolysis Characteristic and Mechanism of Waste Tyre: A Thermogravimetry-Mass Spectrometry Analysis. J. Anal. Appl. Pyrolysis 2018, 129, 1-5. https://doi.org/10.1016/j.jaap.2017.12.016
https://doi.org/10.1016/j.jaap.2017.12.016
[16] Przydatek, G.; Budzik, G.; Janik, M. Effectiveness of Selected Issues Related to Used Tyre Management in Poland. Environ. Sci. Pollut. Res. 2022, 29, 31467-31475. https://doi.org/10.1007/s11356-022-18494-7
https://doi.org/10.1007/s11356-022-18494-7
[17] Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O.; Kochubei, V. Rubber Crumb Modified Bitumen Produced from Crude Oil Residuals of Ukrainian Deposits. Chem. Chem. Technol. 2020, 14, 420-425. https://doi.org/10.23939/chcht14.03.420
https://doi.org/10.23939/chcht14.03.420
[18] Oboirien, B.O.; North, B.C. A Review of Waste Tyre Gasification. J. Environ. Chem. Eng. 2017, 5, 5169-5178. https://doi.org/10.1016/j.jece.2017.09.057
https://doi.org/10.1016/j.jece.2017.09.057
[19] Tang, X.; Zhang, W.; Li, D. Thermogravimetric Analysis of Combustion Characteristics of Waste Tires. J. Nanjing Univ. Sci. Technol. 2006, 28, 85-88. https://doi.org/10.3969/j.issn.1671-7627.2006.02.020
[20] Williams, P.T. Pyrolysis of Waste Tyres: A Review. Waste Manage. 2013, 33, 1714-1728. https://doi.org/10.1016/j.wasman.2013.05.003
https://doi.org/10.1016/j.wasman.2013.05.003
[21] Martinez, J.D.; Puy, N.; Murillo, R.; Garcia, T.; Navarro, M.V.; Mastral, A.M. Waste Tyre Pyrolysis - A Review. Renew. Sustain. Energy Rev. 2013, 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
https://doi.org/10.1016/j.rser.2013.02.038
[22] Zhang, X.; Tang, J.; Chen, J. Behavior of Sulfur During Pyrolysis of Waste Tires: A Critical Review. J. Energy Inst. 2022, 102, 302-314. https://doi.org/10.1016/j.joei.2022.04.006
https://doi.org/10.1016/j.joei.2022.04.006
[23] Sagar, M.; Nibedita, K.; Manohar, N.; Kumar, K.R.; Suchismita, S.; Pradnyesh, A.; Reddy, A.B.; Sadiku, E.R.; Gupta, U.N.; Lachit, P.; et al. A Potential Utilization of End-of-Life Tyres as Recycled Carbon Black in EPDM Rubber. Waste Manage. 2018, 74, 110-122. https://doi.org/10.1016/j.wasman.2018.01.003
https://doi.org/10.1016/j.wasman.2018.01.003
[24] Feng, Z.; Rao, W.; Chen, Ch.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance Evaluation of Bitumen Modified with Pyrolysis Carbon Black Made from Waste Tyres. Constr. Build. Mater. 2016, 111, 495-501. https://doi.org/10.1016/j.conbuildmat.2016.02.143
https://doi.org/10.1016/j.conbuildmat.2016.02.143
[25] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
https://doi.org/10.1016/j.sajce.2022.12.003
[26] DSTU ISO 589:2015; National Standard of Ukraine; Hard coal - Determination of total moisture. SE UkrNDNC: Kyiv, Ukraine, 2015.
[27] GOST 11022-95; Interstate standard; Solid Mineral Fuel. Methods for Determining Ash Content. ITC 179: Minsk, Belarus, 1995.
[28] DSTU ISO 562:2015; National Standard of Ukraine; Hard coal and coke - Determination of volatile matter. SE UkrNDNC: Kyiv, Ukraine, 2015.
[29] ISO 351:1996. ; Interstate standard; Solid mineral fuels - Determination of total sulfur - High temperature combustion method. TC 27 and SC 5: Genève, Switzerland, 1996.
[30] DSTU ISO 1928:2006; National Standard of Ukraine; Solid mineral fuels. Determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value. ТК 63: Kyiv, Ukraine, 2006.
[31] ISO 625:1996; Interstate standard; Solid mineral fuels - Determination of carbon and hydrogen - Liebig method. TC 27 and SC 5: Genève, Switzerland, 1996.
[32] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
[33] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
[34] Chipko, T.; Donchenko, M.; Prysiazhnyi, Yu.; Mnykh. R.; Pochapska, I.; Pyshyev, S. Study on the Technical Lignin Effect on the Road Bitumen Properties. Chem. Chem. Technol. 2025, 19, 395-402. https://doi.org/10.23939/chcht19.02.395
https://doi.org/10.23939/chcht19.02.395
[35] EN 13398:2018; Bitumen and Bituminous Binders. Determination of the Elasticity. iTeh: Newark, NJ, USA, 2019.
[36] DSTU 8787:2018; National Standard of Ukraine; Bitumen and Bituminous Binders. Determination of Adhesion with Crushed Stone. SE UkrNDNC: Kyiv, Ukraine, 2018.
[37] DSTU 9169:2021; National Standard of Ukraine; Bitumen and bituminous Binders. Determination of Resistance to Stripping from Mineral Material. SE UkrNDNC: Kyiv, Ukraine, 2022.
[38] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.
[39] Pyshyev, S.; Kukhar, O.; Prysiazhnyi, Yu.; Korchak, B.; Niavkevych, М.; Fałtynowicz, H.; Zhytnetskyi, I. Use of Carbonized Residue from the Pyrolysis Process of Waste Tires as a Modifier of Road Bitumen. Chemistry, technology and application of substances 2024, 7, 86-94. https://doi.org/10.23939/ctas2024.01.086
https://doi.org/10.23939/ctas2024.01.086
[40] DSTU 4044:2019. National Standard of Ukraine; Bitumens petroleum. SE UkrNDNC: Kyiv, Ukraine, 2020.
[41] SOU 45.2-00018112-067:2011. National Standard of Ukraine; Road Bitumen, Modified with Adhesive Additives. Specifications. SE UkrNDNC: Kyiv, Ukraine, 2011.