Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Obtaining an Eco-Friendly Biocomposite Based on Walnut Shell for Use in Furniture Production

Lali Tabatadze1, Darejan Iremashvili1, David Gventsadze2, Manana Berulava1, Natia Shengelia1
Affiliation: 
1 Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technology and Pharmacy. Department of Chemistry. Tbilisi, 0186, Georgia 2 Iv. Javakhishvili Tbilisi State University, R. Agladze Institute of Inorganic Chemistry and Electrochemistry, Tbilisi 0186, Georgia l.tabatadze@sou.edu.ge
DOI: 
https://doi.org/10.23939/chcht19.03.503
AttachmentSize
PDF icon full_text.pdf1.14 MB
Abstract: 
Polymer composite materials are modern industrial products containing reinforcing fillers obtained from renewable agricultural and plant raw materials. The results of this study showed the effect of a natural filler consisting of walnut shells on the physical and mechanical properties of biomaterials. Using simple technology and an environmentally friendly approach, a formaldehyde-free biomaterial based on polypropylene modified with tetraethyl orthosilicate (TEOS), was obtained. The effect of processing parameters (Relative density, Compression strength, Bending strength, Impact viscosity, Water absorption) on the physical and mechanical properties of biomaterials was observed. As a result of modification with TEOS, the mechanical characteristics of biomaterials, as well as their operational properties, were improved. The optimal composition of the developed modified biocomposites is 60 wt.%, while the strength and impact strength indicators are maximum and are respectively: 65.87 MPa, 43.25 MPa and 6.8 kJ/m2, which allows the use of the developed composites for the manufacture of unloaded furniture elements. The effect of the new material on the biological system was studied. The obtained result showed that the biocomposite did not affect the total number of leukocytes in the peripheral blood, and did not change the histoarchitecture of the liver and brain tissues in adult white mice.
References: 

[1] Di, X.; Liang, X.; Shen, Ch.; Pei, Yu.; Wu, B.; He, Zh. Carbohydrates Used in Polymeric Systems for Drug Delivery: From Structures to Applications. Pharmaceutics 2022, 14, 739. https://doi.org/10.3390/pharmaceutics14040739
https://doi.org/10.3390/pharmaceutics14040739

[2] Wafiroh, S.; Abdulloh, A.; Widati, A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by TiO2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291-298. https://doi.org/10.23939/chcht15.02.291
https://doi.org/10.23939/chcht15.02.291

[3] Sidamonidze, N.; Tabatadze, L.; Vardiashvili, R.; Nutsubidze, M.; Iremashvili, D.; Chachua, E.; Shengelia, N. Hydrosulphurisation Reactions of Allyl Derivatives of Altropyranose with Mercaptans. Oxid. Commun. 2023, 47, 337-344. https://scibulcom.net/en/journal/0209-4541/issue/2023-46-2/

[4] Pachulia, Z.; Shengelia, N.; Tabatadze, L.; Gakhokidze, R. Modeling of the Synthesis of Sulfanilamide Monoglucoside by Quantum-Chemical Method. Bulletin of the Georgian National Academy of Sciences 2016, 10, 33-36. http://science.org.ge/bnas/vol-10-4.html

[5] Sidamonidze, N.; Tabatadze, L.; Vardiashvili, R. Condensation Reactions of 1-Chloro-2,3,4-tri-O-acetyl-ɑ-L-Arabinopyranose and 1-Chloro-2,3,4-tri-O-acetyl-ɑ-L-Rhamnopyranose with α-Pyrrolidone and Caprolactams. Oxid. Commun. 2022, 45, 628-634. https://scibulcom.net/en/journal/0209-4541/issue/2022-45-4/

[6] Sidamonidze, N.; Gakhokidze, R.; Vardiashvili, R.; Gelovani, T.; Tabatadze, L. Synthesis and Biological Activity of some Derivatives of N-Glycosylamines. Oxid. Commun. 2023, 46, 87-95. https://scibulcom.net/en/journal/0209-4541/issue/2023-46-1/

[7] Mtchedlishvili, M.; Tabatadze, L.; Gventsadze, D.; Lezhava, T.; Gventsadze, L.; Iremashvili, D.; Shonia, T. Technological Aspects of Biopolymers Based on Yucca Gloriosa Fiber. Bulletin of the Georgian National Academy of Sciences 2024, 18, 138-144. http://science.org.ge/bnas/vol-18-4.html

[8] Chen, Ch.; Xu, C.; Zhai, J.; Zhao, Ch.; Ma, Yu.; Yang, W. Low-Cost and Formaldehyde-Free Wood Adhesive Based on Water-Soluble Olefin-Maleamic Acid Copolymers. Ind. Eng. Chem. Res. 2023, 62, 20547-20555. https://doi.org/10.1021/acs.iecr.3c01968
https://doi.org/10.1021/acs.iecr.3c01968

[9] Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem Rev. 2010, 110, 2536-2572. https://pubs.acs.org/doi/10.1021/cr800399g
https://doi.org/10.1021/cr800399g

[10] Tatrishvili1, T.; Mukbaniani, O.; Kvnikadze, N.; Chikhladze, Sh. Eco-Friendly Bamboo-Based Composites. Chem. Chem. Technol. 2024, 18, 44-56. https://doi.org/10.23939/chcht18.01.044
https://doi.org/10.23939/chcht18.01.044

[11] Obidiegwu, M.; Nwanonenyi S.; Eze I.; Egbuna I. The Effect of Walnut Shell Powder on the Pro¬perties of Polypropylene Filled Composite. The International Asian Research Journal 2014, 2, 22-29. https://www.researchgate.net/publication/354684222

[12] Al-Sarraf, M. A. Sustainable and Environmentally Friendly Composites: Development of Walnut Shell Powder-Reinforced Polypropylene Composites for Potential Automotive Applications. J. Mech. Behav. Mater. 2024, 33, 20240017. https://doi.org/10.1515/jmbm-2024-0017
https://doi.org/10.1515/jmbm-2024-0017

[13] Danchenko, Y.; Kariev, A.; Lebedev, V.; Barabash, E.; Obizhenko, T. Physic-Mechanical Properties of Composites Based on Secondary Polypropylene and Dispersed of Plant Waste. Mater. Sci. Forum 2020, 1006, 227-232. https://doi.org/10.4028/www.scientific.net/MSF.1006.227
https://doi.org/10.4028/www.scientific.net/MSF.1006.227

[14] Herasymenko, V.; Kariev, A.; Balandaieva, L.; Lebedev, V.; Vynohradov, V. Construction Composites Based on Secondary Thermoplastics and Manufacturing Waste. IOP Conference Series: Earth and Environ. Sci. 2024, 1376, 012011. http://dx.doi.org/10.1088/1755-1315/1376/1/012011
https://doi.org/10.1088/1755-1315/1376/1/012011

[15] Turkadze, Ts.; Gventsadze, D.; Mumladze, T.; Gorgodze, G.; Bochoidze, I. Characterization of Polypropylene Composite Reinforced on Bio-waste from the Production of Tung Oil. Environ. Res. Eng. Manage. 2023, 79, 29-38. https://erem.ktu.lt/index.php/erem/article/view/33393
https://doi.org/10.5755/j01.erem.79.4.33393

[16] Nakhutsrishvili, G.; Berulava, M.; Tavdishvili, E.; Londaridze, L.; Dzidziguri, D. Study of Possible Negative Impact of a New Wood Composite Containing Triethoxysilylated Styrene on a Living System in Experiment. In Advanced Polymer Structures. Chemistry for Engineering Applications; Mukbaniani, O.; Tatrishvili, T.; Abadie, M.J.M., Eds.; Apple Academic Press: New York, 2023. https://doi.org/10.1201/9781003352181
https://doi.org/10.1201/9781003352181