Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis and Thermodynamic Parameters of Phase Transitions of 3-(1-R-5-Phenyl-1H-Pyrrol-2-yl)propanoic Acid Derivatives

Dmytro Shevchenko1, Yuriy Horak2, Nadiia Tyschenko3, Dariia Kichura4, Mykola Obushak2, Iryna Sobechko1
Affiliation: 
1 Department of Physical, Analytical and General Chemistry, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine 2 Department of Organic Chemistry, Faculty of Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya St., Lviv 79005, Ukraine 3 Department № 48 of Physics, Chemistry and Technology of Nanotextured Ceramics and Nanocomposite Materials, Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhizhanovskoho St., Kyiv 03142, Ukraine 4 Department of Organic Products Technology, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine dmytro.s.shevchenko@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.03.403
AttachmentSize
PDF icon full_text.pdf235.38 KB
Abstract: 
A series of 3-(1-R-5-phenyl-1H-pyrrol-2-yl)propanoic acids (R = H, Ar, Alk, Hetaryl) was obtained via the reaction of 4,7-dioxo-7-phenylheptanoic acid with amines. The enthalpies of vaporization and fusion of eight compounds were experimentally determined using differential thermal and thermogravimetric methods of analysis for the first time. Based on the experimentally determined thermodynamic parameters of the melting process, an analytical method for calculating the enthalpy of fusion from the specific value of the entropy of fusion for substances with an arylpyrrole fragment is proposed. Calculating methods for the enthalpies of sublimation using the data of derivatographic studies are analyzed. Recalculation of the enthalpies of phase transitions to 298.15 K was performed.
References: 

[1] Mohi-ud-din, R.; Pottoo, F. H.; Mir, R. H.; Mir, P. A.; Sabreen, S.; Maqbool, M.; Shah, A. J.; Shenmar, K.; Raza, S. N. A Comprehensive Review on Journey of Pyrrole Scaffold against Multiple Therapeutic Targets. Anti-Cancer Agents Med. Chem. 2022, 22, 3291-3303. https://doi.org/10.2174/1871520622666220613140607
https://doi.org/10.2174/1871520622666220613140607

[2] Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics. RSC Adv. 2015, 5, 15233-15266. https://doi.org/10.1039/c4ra15710a
https://doi.org/10.1039/C4RA15710A

[3] Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry; CRC Press, 2020. https://doi.org/10.1201/9781003072850
https://doi.org/10.1201/9781003072850

[4] Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Five-Membered Heterocycles. The Chemistry of Heterocycles 2019, 149-478. https://doi.org/10.1016/b978-0-08-101033-4.00005-x
https://doi.org/10.1016/B978-0-08-101033-4.00005-X

[5] Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. https://doi.org/10.3390/molecules25081909
https://doi.org/10.3390/molecules25081909

[6] Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M. V.; Barraja, P.; Montalbano, A. Bioactive Pyrrole-Based Compounds with Target Selectivity. Eur. J. Med. Chem. 2020, 208, 112783. https://doi.org/10.1016/j.ejmech.2020.112783
https://doi.org/10.1016/j.ejmech.2020.112783

[7] Bortolozzi, R.; Mattiuzzo, E.; Dal Pra, M.; Sturlese, M.; Moro, S.; Hamel, E.; Carta, D.; Viola, G.; Grazia Ferlin, M. Targeting Tubulin Polymerization by Novel 7-Aryl-Pyrroloquinolinones: Synthesis, Biological Activity and SARs. Eur. J. Med. Chem 2018, 143, 244-258. https://doi.org/10.1016/j.ejmech.2017.11.038
https://doi.org/10.1016/j.ejmech.2017.11.038

[8] Paprocka, R.; Pazderski, L.; Mazur, L.; Wiese-Szadkowska, M.; Kutkowska, J.; Nowak, M.; Helmin-Basa, A. Synthesis and Structural Study of Amidrazone Derived Pyrrole-2,5-Dione Derivatives: Potential Anti-Inflammatory Agents. Molecules 2022, 27, 2891. https://doi.org/10.3390/molecules27092891
https://doi.org/10.3390/molecules27092891

[9] Amin, A.; Qadir, T.; Sharma, P. K.; Jeelani, I.; Abe, H. A Review on the Medicinal and Industrial Applications of N-Containing Heterocycles. Open J. Med. Chem. 2022, 16, e2209010. https://doi.org/10.2174/18741045-v16-e2209010
https://doi.org/10.2174/18741045-v16-e2209010

[10] Bulumulla, C.; Gunawardhana, R.; Gamage, P. L.; Miller, J. T.; Kularatne, R. N.; Biewer, M. C.; Stefan, M. C. Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces. 2020, 12, 32209-32232. https://doi.org/10.1021/acsami.0c07161
https://doi.org/10.1021/acsami.0c07161

[11] Mihalovits, M. Temperature and Pressure Effects on the Hydrogen-Bonding Hansen Solubility Parameter: Cases of N-Alkanols (C1-C5). J. Mol. Liq. 2022, 363, 119910. https://doi.org/10.1016/j.molliq.2022.119910
https://doi.org/10.1016/j.molliq.2022.119910

[12] Pragathi, S.G.; Echanur, A. V.; Matadh, A. V.; Rangappa, S.; Shivakumar, H.N.; Murthy, R. N.; Ranganath, V. S.; Ureña-Benavides, E. E.; Maibach, H.; Murthy, S.N. Sublimation of Drugs from the Site of Application of Topical Products. Mol. Pharmaceutics 2023, 20, 2814-2821. https://doi.org/10.1021/acs.molpharmaceut.2c00816
https://doi.org/10.1021/acs.molpharmaceut.2c00816

[13] Sobechko, I.; Horak, Y.; Dibrivnyi, V.; Obushak, M.; Goshko, L. Thermodynamic Properties of 2-Methyl-5-Arylfuran-3 Carboxylic Acids Chlorine Derivatives in Organic Solvents. Chem. Chem. Technol. 2019, 13, 280-287. https://doi.org/10.23939/chcht13.03.280
https://doi.org/10.23939/chcht13.03.280

[14] Naef, R.; Acree, W. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals. Molecules 2017, 22, 1059. https://doi.org/10.3390/molecules22071059
https://doi.org/10.3390/molecules22071059

[15] Losada-Pérez, P.; Shekhar, C.; Leys, J.; Cordoyiannis, G.; Glorieux, C.; Thoen, J. Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry. Int. J. Thermophys 2011, 32, 913-924. https://doi.org/10.1007/s10765-011-0984-0
https://doi.org/10.1007/s10765-011-0984-0

[16] Santos, L.M.; Lobo Ferreira, A.I.; Štejfa, V.; Rodrigues, A.S.M.C.; Rocha, M.A.A.; Torres, M.C.; Tavares, F.M.S.; Carpinteiro, F.S. Development of the Knudsen Effusion Methodology for Vapour Pressure Measurements of Low Volatile Liquids and Solids Based on a Quartz Crystal Microbalance. J. Chem. Thermodyn. 2018, 126, 171-186. https://doi.org/10.1016/j.jct.2018.07.004
https://doi.org/10.1016/j.jct.2018.07.004

[17] Ximello, A.; Flores, H.; Rojas, A.; Camarillo, E.A.; Amador, M.P. Gas Phase Enthalpies of Formation of Nitrobenzamides Using Combustion Calorimetry and Thermal Analysis. J. Chem. Thermodyn. 2014, 79, 33-40. https://doi.org/10.1016/j.jct.2014.07.006
https://doi.org/10.1016/j.jct.2014.07.006

[18] Giani, S.; Riesen, R.; Schawe, J. E. K. An Indirect Method for Vapor Pressure and Phase Change Enthalpy Determination by Thermogravimetry. Int. J. Thermophys. 2018, 39, 84. https://doi.org/10.1007/s10765-018-2407-y
https://doi.org/10.1007/s10765-018-2407-y

[19] Treviño-Kauffmann, M. A.; Esparza-Rivera, D.; Rojas, A. Sublimation Enthalpies of Organic Compounds by Isothermal Thermogravimetry. J. Therm. Anal. Calorim. 2024. https://doi.org/10.1007/s10973-024-12897-z
https://doi.org/10.1007/s10973-024-12897-z

[20] Chatterjee, K.; Hazra, A.; Dollimore, D.; Alexander, K. S. Estimating Vapor Pressure Curves by Thermogravimetry: A Rapid and Convenient Method for Characterization of Pharmaceuticals. Eur. J. Pharm. Biopharm. 2002, 54, 171-180. https://doi.org/10.1016/s0939-6411(02)00079-6
https://doi.org/10.1016/S0939-6411(02)00079-6

[21] Sitar, A.; Shevchenko, D.; Matiichuk, V.V.; Skrypska, O.; Lesyuk, O.; Khomyak, S.; Lytvyn, R.; Sobechko, I.; Horak, Yu. Synthesis of 3-(1-R-5-Phenyl-1H-Pyrrol-2-yl)Propanoic Acids and Prediction of Their Biological Activity. Visnyk of the Lviv University. Series Chemistry 2024, 65, 223-223. https://doi.org/10.30970/vch.6501.223 (in Ukrainian)
https://doi.org/10.30970/vch.6501.223

[22] Sobechko, I.; Dibrivnyi, V.; Horak, Y.; Velychkivska, N.; Kochubei, V.; Obushak, M. Thermodynamic Properties of Solubility of 2-Methyl-5-Arylfuran-3-Carboxylic Acids in Organic Solvents. Chem. Chem. Technol. 2017, 11, 397-404. https://doi.org/10.23939/chcht11.04.397
https://doi.org/10.23939/chcht11.04.397

[23] Klachko, O.; Matiychuk, V.; Sobechko, I.; Serheyev, V.; Tishchenko, N. Thermodynamic Properties of 6-Methyl-2-Oxo-4-Aryl-1,2,3,4-Tetrahydropyrimidine-5-Carboxylic Acid Esters. Chem. Chem. Technol. 2020, 14, 277-283. https://doi.org/10.23939/chcht14.03.277
https://doi.org/10.23939/chcht14.03.277

[24] Zhuang, W.; Ju, C.-F.; Zhang, X.-Q.; Xiao, J.; Wang, K. Synthesis, Characterization and Crystal Structure of 4,7-Dioxo-7-phenylheptanoic Acid. Asian J. Chem. 2014, 26, 3116-3118. https://doi.org/10.14233/ajchem.2014.17199
https://doi.org/10.14233/ajchem.2014.17199

[25] Blicke, F. F.; Warzynski, R. J.; Faust, J. A.; Gearien, J. E. The Preparation of Certain Acids and Esters which Contain Phenylpyrryl Nuclei. J. Am. Chem. Soc. 1944, 66, 1675-1677. https://doi.org/10.1021/ja01238a021
https://doi.org/10.1021/ja01238a021

[26] Sir Robinson, R.; Todd, W. M. β-Phenylfurylethylamine and analogous derivatives of thiophen and pyrrole. J. Chem. Soc. 1939, 1743-1747. https://doi.org/10.1039/JR9390001743
https://doi.org/10.1039/JR9390001743

[27] Veitch, G. E.; Bridgwood, K. L.; Rands-Trevor, K.; Ley, S. V. Magnesium Nitride as a Convenient Source of Ammonia: Preparation of Pyrroles. Synlett 2008, 17, 2597-2600. https://doi.org/10.1055/s-0028-1083504
https://doi.org/10.1055/s-0028-1083504

[28] Acree, W.; Chickos, J. S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1− C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. https://doi.org/10.1063/1.4948363
https://doi.org/10.1063/1.4948363

[29] Sobechko, I. Calculation Method of Heat Capacity Change during Organic Compounds Vaporization and Sublimation. Chem. Chem. Technol.2016, 10, 27-33. https://doi.org/10.23939/chcht10.01.027
https://doi.org/10.23939/chcht10.01.027