Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Carboxymethyl Cellulose-Blended Films from Rice Stubble as a New Potential Biopolymer Source to Reduce Agricultural Waste: A Mini Review

Heri Septya Kusuma1, Puput Yugiani1, Andrew Nosakhare Amenaghawon2, Handoko Darmokoesoemo3
Affiliation: 
1 Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia 2 Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria 3 Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia heriseptyakusuma@gmail.com; handoko.darmokoesoemo@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.02.200
AttachmentSize
PDF icon full_text.pdf627.13 KB
Abstract: 
The vegetative part of the rice plant, Oryza sativa L., that remains after paddy fields have been cleared during harvest or afterward is known as rice stubble. Carboxymethyl Cellulose from Rice Stubble (CMCr) is a promising biopolymer source that can be made from rice stubble waste. Carboxymethyl cellulose was synthesized from rice stubble by a solvent-casting method. Various types of plasticizers (glycerol and olive oil) and the components they contain provide flexibility for use as a material for food packaging. The films' moisture barrier was enhanced by the olive oil content while their extensibility was enhanced by the glycerol content. Indonesia is known as a country with the majority of the population working as farmers. Along with the increase in rice harvested area each year, agricultural waste in the form of rice stubble is also increasing. In the future, the application of CMCr in food packaging has the potential to revolutionize sustainable practices in Indonesia's agricultural sector. By leveraging CMCr's unique properties, such as enhanced moisture barrier and increased extensibility, there is an opportunity to develop eco-friendly packaging solutions. This innovation not only addresses the challenge of rising rice stubble waste but also contributes to the reduction of environmental pollution, offering a greener and more sustainable approach to packaging in the country.
References: 

[1] Khasanah, I. N.; Astuti, K. Luas Panen Dan Produksi Padi Di Indonesia 2022.

[2] Wafiroh, S.; Abdulloh, A.; Widati, A. A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by Tio2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291-298. https://doi.org/10.23939/chcht15.02.291
https://doi.org/10.23939/chcht15.02.291

[3] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357-364. https://doi.org/10.23939/chcht17.02.357
https://doi.org/10.23939/chcht17.02.357

[4] David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers (Basel) 2019, 11, 200-218. https://doi.org/10.3390/polym11020200
https://doi.org/10.3390/polym11020200

[5] Bifani, V.; Ramírez, C.; Ihl, M.; Rubilar, M.; García, A.; Zaritzky, N. Effects of Murta (Ugni Molinae Turcz) Extract on Gas and Water Vapor Permeability of Carboxymethylcellulose-Based Edible Films. LWT 2007, 40, 1473-1481. https://doi.org/10.1016/j.lwt.2006.03.011
https://doi.org/10.1016/j.lwt.2006.03.011

[6] Mali, S.; Grossmann, M. V. E.; García, M. A.; Martino, M. N.; Zaritzky, N. E. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Starch Sources. J Food Eng 2006, 75, 453-460. https://doi.org/10.1016/j.jfoodeng.2005.04.031
https://doi.org/10.1016/j.jfoodeng.2005.04.031

[7] Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends in Food Science and Technology; Elsevier Ltd June 1, 2021; pp 532-546. https://doi.org/10.1016/j.tifs.2021.04.016
https://doi.org/10.1016/j.tifs.2021.04.016

[8] Arik Kibar, E. A.; Us, F. Thermal, Mechanical and Water Adsorption Properties of Corn Starch-Carboxymethylcellulose/Methylcellulose Biodegradable Films. J Food Eng 2013, 114, 123-131. https://doi.org/10.1016/j.jfoodeng.2012.07.034
https://doi.org/10.1016/j.jfoodeng.2012.07.034

[9] Ghanbarzadeh, B.; Almasi, H.; Entezami, A. A. Physical Properties of Edible Modified Starch/Carboxymethyl Cellulose Films. Innovative Food Science and Emerging Technologies 2010, 11, 697-702. https://doi.org/10.1016/j.ifset.2010.06.001
https://doi.org/10.1016/j.ifset.2010.06.001

[10] Petersson, M.; Stading, M. Water Vapour Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions. Food Hydrocoll 2005, 19, 123-132. https://doi.org/10.1016/j.foodhyd.2004.04.021
https://doi.org/10.1016/j.foodhyd.2004.04.021

[11] Cao, N.; Yang, X.; Fu, Y. Effects of Various Plasticizers on Mechanical and Water Vapor Barrier Properties of Gelatin Films. Food Hydrocoll 2009, 23, 729-735. https://doi.org/10.1016/j.foodhyd.2008.07.017
https://doi.org/10.1016/j.foodhyd.2008.07.017

[12] Ma, W.; Tang, C. H.; Yin, S. W.; Yang, X. Q.; Qi, J. R.; Xia, N. Effect of Homogenization Conditions on Properties of Gelatin-Olive Oil Composite Films. J Food Eng 2012, 113, 136-142. https://doi.org/10.1016/j.jfoodeng.2012.05.007
https://doi.org/10.1016/j.jfoodeng.2012.05.007

[13] López-Miranda, J.; Pérez-Martinez, P.; Pérez-Jiménez, F. Health Benefits of Monounsaturated Fatty Acids. In Improving the Fat Content of Foods; Elsevier Ltd, 2006; pp 71-106. https://doi.org/10.1533/9781845691073.1.71
https://doi.org/10.1533/9781845691073.1.71

[14] Ohkawa, K. Nanofibers of Cellulose and Its Derivatives Fabricated Using Direct Electrospinning. Molecules MDPI AG 2015, 9139-9154. https://doi.org/10.3390/molecules20059139
https://doi.org/10.3390/molecules20059139

[15] Suganya, V.; Anuradha, V. Microencapsulation and Nanoencapsulation: A Review. International Journal of Pharmaceutical and Clinical Research 2017, 9, 233-239. https://doi.org/10.25258/ijpcr.v9i3.8324
https://doi.org/10.25258/ijpcr.v9i3.8324

[16] Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Ghorbani, M.; Samadi Kafil, H. Fabrication of Cumin Seed Oil Loaded Gliadin-Ethyl Cellulose Nanofibers Reinforced with Adipic Acid for Food Packaging Application. Food Packag Shelf Life 2021, 30, 100754-100763. https://doi.org/10.1016/j.fpsl.2021.100754
https://doi.org/10.1016/j.fpsl.2021.100754

[17] Rajeswari, A.; Christy, E. J. S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environmental Chemistry and Ecotoxicology 2020, 2, 107-114. https://doi.org/10.1016/J.ENCECO.2020.07.003
https://doi.org/10.1016/j.enceco.2020.07.003

[18] Guzman-Puyol, S.; Hierrezuelo, J.; Benítez, J. J.; Tedeschi, G.; Porras-Vázquez, J. M.; Heredia, A.; Athanassiou, A.; Romero, D.; Heredia-Guerrero, J. A. Transparent, UV-Blocking, and High Barrier Cellulose-Based Bioplastics with Naringin as Active Food Packaging Materials. Int J Biol Macromol 2022, 209, 1985-1994. https://doi.org/10.1016/J.IJBIOMAC.2022.04.177
https://doi.org/10.1016/j.ijbiomac.2022.04.177

[19] Guzman-Puyol, S.; Tedeschi, G.; Goldoni, L.; Benítez, J. J.; Ceseracciu, L.; Koschella, A.; Heinze, T.; Athanassiou, A.; Heredia-Guerrero, J. A. Greaseproof, Hydrophobic, and Biodegradable Food Packaging Bioplastics from C6-Fluorinated Cellulose Esters. Food Hydrocoll 2022, 128, 107562-107573. https://doi.org/10.1016/j.foodhyd.2022.107562
https://doi.org/10.1016/j.foodhyd.2022.107562

[20] Rao, J.; Shen, C.; Yang, Z.; Fawole, O. A.; Li, J.; Wu, D.; Chen, K. Facile Microfluidic Fabrication and Characterization of Ethyl Cellulose/PVP Films with Neatly Arranged Fibers. Carbohydr Polym 2022, 292, 119702. https://doi.org/10.1016/J.CARBPOL.2022.119702
https://doi.org/10.1016/j.carbpol.2022.119702

[21] Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile Fabrication of Multifunctional Citrus Pectin Aerogel Fortified with Cellulose Nanofiber as Controlled Packaging of Edible Fungi. Food Chem 2022, 374, 131763. https://doi.org/10.1016/J.FOODCHEM.2021.131763
https://doi.org/10.1016/j.foodchem.2021.131763

[22] Arun, R.; Shruthy, R.; Preetha, R.; Sreejit, V. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging. Chemosphere 2022, 291, 132786. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132786
https://doi.org/10.1016/j.chemosphere.2021.132786

[23] Jancy, S.; Shruthy, R.; Preetha, R. Fabrication of Packaging Film Reinforced with Cellulose Nanoparticles Synthesised from Jack Fruit Non-Edible Part Using Response Surface Methodology. Int J Biol Macromol 2020, 142, 63-72. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.09.066
https://doi.org/10.1016/j.ijbiomac.2019.09.066

[24] Ding, Z.; Chang, X.; Fu, X.; Kong, H.; Yu, Y.; Xu, H.; Shan, Y.; Ding, S. Fabrication and Characterization of Pullulan-Based Composite Films Incorporated with Bacterial Cellulose and Ferulic Acid. Int J Biol Macromol 2022, 219, 121-137. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.236
https://doi.org/10.1016/j.ijbiomac.2022.07.236

[25] Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. "Faba Bean Protein Films Reinforced with Cellulose Nanocrystals as Edible Food Packaging Material." Food Hydrocoll 2021, 121, 107019. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107019
https://doi.org/10.1016/j.foodhyd.2021.107019

[26] Sharma, A.; Mandal, T.; Goswami, S. Fabrication of Cellulose Acetate Nanocomposite Films with Lignocelluosic Nanofiber Filler for Superior Effect on Thermal, Mechanical and Optical Properties. Nano-Structures & Nano-Objects 2021, 25, 100642. https://doi.org/https://doi.org/10.1016/j.nanoso.2020.100642
https://doi.org/10.1016/j.nanoso.2020.100642

[27] Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M. A.; Sameen, D. E.; Dai, J.; Li, S.; Qin, W. Fabrication and Characterization of pH-Responsive Intelligent Films Based on Carboxymethyl Cellulose and Gelatin/Curcumin/Chitosan Hybrid Microcapsules for Pork Quality Monitoring. Food Hydrocoll 2022, 124, 107224. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107224
https://doi.org/10.1016/j.foodhyd.2021.107224

[28] Yang, Y.; Zheng, S.; Liu, Q.; Kong, B.; Wang, H. Fabrication and Characterization of Cinnamaldehyde Loaded Polysaccharide Composite Nanofiber Film as Potential Antimicrobial Packaging Material. Food Packag Shelf Life 2020, 26, 100600. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100600
https://doi.org/10.1016/j.fpsl.2020.100600

[29] Roy, S.; Rhim, J.-W. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root. Food Hydrocoll 2021, 114, 106566. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106566
https://doi.org/10.1016/j.foodhyd.2020.106566

[30] el Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of Antimicrobial Films Based on Hydroxyethylcellulose and ZnO for Food Packaging Application. Food Packag Shelf Life 2020, 23, 100462. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100462
https://doi.org/10.1016/j.fpsl.2020.100462

[31] Roy, S.; Kim, H.-J.; Rhim, J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int J Biol Macromol 2021, 183, 305-315. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.04.162
https://doi.org/10.1016/j.ijbiomac.2021.04.162

[32] Zhang, A.; Zou, Y.; Xi, Y.; Wang, P.; Zhang, Y.; Wu, L.; Zhang, H. Fabrication and Characterization of Bamboo Shoot Cellulose/Sodium Alginate Composite Aerogels for Sustained Release of Curcumin. Int J Biol Macromol 2021, 192, 904-912. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.027
https://doi.org/10.1016/j.ijbiomac.2021.10.027

[33] Yeasmin, S.; Yeum, J. H.; Yang, S. B. Fabrication and Characterization of Pullulan-Based Nanocomposites Reinforced with Montmorillonite and Tempo Cellulose Nanofibril. Carbohydr Polym 2020, 240, 116307. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116307
https://doi.org/10.1016/j.carbpol.2020.116307

[34] Sharmila, G.; Muthukumaran, C.; Kirthika, S.; Keerthana, S.; Kumar, N. M.; Jeyanthi, J. Fabrication and Characterization of Spinacia Oleracea Extract Incorporated Alginate/Carboxymethyl Cellulose Microporous Scaffold for Bone Tissue Engineering. Int J Biol Macromol 2020, 156, 430-437. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.04.059
https://doi.org/10.1016/j.ijbiomac.2020.04.059

[35] Qu, B.; Luo, Y. Preparation and Characterization of Carboxymethyl Cellulose Capped Zinc Oxide Nanoparticles: A Proof-of-Concept Study. Food Chem 2022, 389, 133001. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133001
https://doi.org/10.1016/j.foodchem.2022.133001

[36] Rao, J.; Lv, Z.; Chen, G.; Hao, X.; Guan, Y.; Peng, F. Fabrication of Flexible Composite Film Based on Xylan from Pulping Process for Packaging Application. Int J Biol Macromol 2021, 173, 285-292. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.128
https://doi.org/10.1016/j.ijbiomac.2021.01.128

[37] Priyadarshi, R.; Kim, S.-M.; Rhim, J.-W. Carboxymethyl Cellulose-Based Multifunctional Film Combined with Zinc Oxide Nanoparticles and Grape Seed Extract for the Preservation of High-Fat Meat Products. Sustainable Materials and Technologies 2021, 29, e00325. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00325
https://doi.org/10.1016/j.susmat.2021.e00325

[38] Rojas-Graü, M. A.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín‐Belloso, O. The Use of Packaging Techniques to Maintain Freshness in Fresh-Cut Fruits and Vegetables: A Review. Int J Food Sci Technol 2009, 44, 875-889.
https://doi.org/10.1111/j.1365-2621.2009.01911.x

[39] Jin, K.; Tang, Y.; Liu, J.; Wang, J.; Ye, C. Nanofibrillated Cellulose as Coating Agent for Food Packaging Paper. Int J Biol Macromol 2021, 168, 331-338. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.12.066
https://doi.org/10.1016/j.ijbiomac.2020.12.066

[40] Hazarika, K. K.; Konwar, A.; Borah, A.; Saikia, A.; Barman, P.; Hazarika, S. Cellulose Nanofiber Mediated Natural Dye Based Biodegradable Bag with Freshness Indicator for Packaging of Meat and Fish. Carbohydr Polym 2022, 120241. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.120241
https://doi.org/10.1016/j.carbpol.2022.120241

[41] Komali, N. D.; Gaikwad, P. S.; Yadav, B. K. Fabrication of Cellulose Acetate Membrane for Monitoring Freshness of Minimally Processed Pomegranate (Punica Granatum) Arils. Food Biosci 2022, 49, 101945. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101945
https://doi.org/10.1016/j.fbio.2022.101945

[42] Shi, C.; Ji, Z.; Zhang, J.; Jia, Z.; Yang, X. Preparation and Characterization of Intelligent Packaging Film for Visual Inspection of Tilapia Fillets Freshness Using Cyanidin and Bacterial Cellulose. Int J Biol Macromol 2022, 205, 357-365. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.02.072
https://doi.org/10.1016/j.ijbiomac.2022.02.072

[43] Ezati, P.; Tajik, H.; Moradi, M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef. Sens Actuators B Chem 2019, 285, 519-528. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.089
https://doi.org/10.1016/j.snb.2019.01.089

[44] Indumathi, M. P.; Saral Sarojini, K.; Rajarajeswari, G. R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int J Biol Macromol 2019, 132, 1112-1120. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.03.171
https://doi.org/10.1016/j.ijbiomac.2019.03.171

[45] Mohammadalinejhad, S.; Almasi, H.; Moradi, M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp. Food Control 2020, 113, 107169. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107169
https://doi.org/10.1016/j.foodcont.2020.107169

[46] Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr Polym 2019, 222, 115030. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115030
https://doi.org/10.1016/j.carbpol.2019.115030

[47] Chen, J.; Zheng, M.; Tan, K. B.; Lin, J.; Chen, M.; Zhu, Y. Development of Xanthan Gum/Hydroxypropyl Methyl Cellulose Composite Films Incorporating Tea Polyphenol and Its Application on Fresh-Cut Green Bell Peppers Preservation. Int J Biol Macromol 2022, 211, 198-206. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.05.043
https://doi.org/10.1016/j.ijbiomac.2022.05.043

[48] Kang, S.; Xiao, Y.; Guo, X.; Huang, A.; Xu, H. Development of Gum Arabic-Based Nanocomposite Films Reinforced with Cellulose Nanocrystals for Strawberry Preservation. Food Chem 2021, 350, 129199. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129199
https://doi.org/10.1016/j.foodchem.2021.129199

[49] Rodsamran, P.; Sothornvit, R. Carboxymethyl Cellulose from Rice Stubble Waste. Songklanakarin J. Sci. Technol. 2020, 42, 454-460.

[50] Yuangsawad, R.; Pramanusai, T.; Boontiangtrong, M. Synthesis and Properties of Carboxymethyl Cellulose Blend Films Derived from Rice Straw. Journal of Advanced Development in Engineering and Science 2023, 13, 95-108. Retrieved from https://ph03.tci-thaijo.org/index.php/pitjournal/article/view/598

[51] Yildirim-Yalcin, M.; Tornuk, F.; Toker, O. S. Recent Advances in the Improvement of Carboxymethyl Cellulose-Based Edible Films. Trends in Food Science and Technology 2022, 129, 179-193. https://doi.org/10.1016/j.tifs.2022.09.022
https://doi.org/10.1016/j.tifs.2022.09.022

[52] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C 2022, 8, 71. https://doi.org/10.3390/c8040071
https://doi.org/10.3390/c8040071

[53] Jouki, M.; Khazaei, N.; Ghasemlou, M.; Hadinezhad, M. Effect of Glycerol Concentration on Edible Film Production from Cress Seed Carbohydrate Gum. Carbohydr Polym 2013, 96, 39-46. https://doi.org/10.1016/j.carbpol.2013.03.077
https://doi.org/10.1016/j.carbpol.2013.03.077

[54] Ghanbarzadeh, B.; Almasi, H. Physical Properties of Edible Emulsified Films Based on Carboxymethyl Cellulose and Oleic Acid. Int J Biol Macromol 2011, 48, 44-49. https://doi.org/10.1016/j.ijbiomac.2010.09.014
https://doi.org/10.1016/j.ijbiomac.2010.09.014

[55] García, M. A.; Martino, M. N.; Zaritzky, N. E. Lipid Addition to Improve Barrier Properties of Edible Starch-Based Films and Coatings. J Food Sci 2000, 65, 941-947. https://doi.org/10.1111/j.1365-2621.2000.tb09397.x
https://doi.org/10.1111/j.1365-2621.2000.tb09397.x

[56] Pereda, M.; Amica, G.; Marcovich, N. E. Development and Characterization of Edible Chitosan/Olive Oil Emulsion Films. Carbohydr Polym 2012, 87, 1318-1325. https://doi.org/10.1016/j.carbpol.2011.09.019
https://doi.org/10.1016/j.carbpol.2011.09.019

[57] Rodsamran, P.; Sothornvit, R. Rice Stubble as a New Biopolymer Source to Produce Carboxymethyl Cellulose-Blended Films. Carbohydr Polym 2017, 171, 94-101. https://doi.org/10.1016/j.carbpol.2017.05.003
https://doi.org/10.1016/j.carbpol.2017.05.003

[58] Mchugh, T. H.; Aujard, J.-F.; Krochta, J. M. Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties. J Food Sci 1994, 59, 416-419. https://doi.org/10.1111/j.1365-2621.1994.tb06980.x
https://doi.org/10.1111/j.1365-2621.1994.tb06980.x

[59] Liu, L.; Kerry, J. F.; Kerry, J. P. Effect of Food Ingredients and Selected Lipids on the Physical Properties of Extruded Edible Films/Casings. Int J Food Sci Technol 2006, 41, 295-302. https://doi.org/10.1111/j.1365-2621.2005.01063.x
https://doi.org/10.1111/j.1365-2621.2005.01063.x

[60] Javanmard, M.; Golestan, L. Effect of Olive Oil and Glycerol on Physical Properties of Whey Protein Concentrate Films. J Food Process Eng 2008, 31, 628-639. https://doi.org/10.1111/j.1745-4530.2007.00179.x