Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Hydrated Properties of Composite Systems for Water and Soil Remediation on the Basis of Nanosilicas and Yeast Cells

Tetyana Krupska1, Natalya Klymenko1, Аlina Holovan1, Alyona Novikova1, Volodymyr Turov1
Affiliation: 
1 Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine 17, General Naumov St., Kyiv 03164, Ukraine a.golovan2020@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.04.630
AttachmentSize
PDF icon full_text.pdf1.54 MB
Abstract: 
The method of low-temperature 1Н NMR spectroscopy is applied to study the hydrated properties of bio-nanocomposite created on the basis of the mixture of hydrophobic and hydrophilic silicas (АМ1-300 and А 300 with ratio of 1:1), water, n-decane, and yeast cells. The produced mixture of nanosilicas contributes to mitosis and cell growth. It is shown that the cause of activation of their vital processes may be related to the formation of the system of water polyassociates, which change the conditions of substance transport through the cell membranes, on the phase boundaries of solid particles and aqueous medium.
References: 

[1] Chen, S.; Zhong, M. Bioremediation of Petroleum-Contaminated Soil. In Environmental Chemistry and Recent Pollution Control Approaches; Saldarriaga Noreña, H.A., Ed.; IntechOpen: London, 2019. https://doi.org/10.5772/intechopen.90289
https://doi.org/10.5772/intechopen.90289

[2] Wang, X.; Zheng, J.; Han, Z.; Chen, H. Bioremediation of Crude Oil-Contaminated Soil by Hydrocarbon-Degrading Microorganisms Immobilized on Humic Acid-Modified Biofuel Ash. J. Chem. Technol. Biotechnol. 2019, 94(6), 1904-1912. https://doi.org/10.1002/jctb.5969
https://doi.org/10.1002/jctb.5969

[3] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13(3), 372-376. https://doi.org/10.23939/chcht13.03.372
https://doi.org/10.23939/chcht13.03.372

[4] Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Hashmat, A.J.; Brix, H. Large-Scale Remediation of Oil-Contaminated Water Using Floating Treatment Wetlands. NPJ Clean Water 2019, 2, 3. https://doi.org/10.1038/s41545-018-0025-7
https://doi.org/10.1038/s41545-018-0025-7

[5] Kowalska, A.; Grobelak, A. Immobilisation of Selected Bacteria for Remediation on Various Media. Inż. Ochr. Śr. 2018, 21(4), 461-472. https://doi.org/10.17512/ios.2018.4.11
https://doi.org/10.17512/ios.2018.4.11

[6] Cheng, J. Bioremediation of Contaminated Water-Based on Various Technologies. Open Access Libr. PrePrints [Online] 2014, 3, 1-13. https://doi.org/10.4236/oalib.preprints.1200056 (accessed October 1, 2022).
https://doi.org/10.4236/oalib.preprints.1200056

[7] Coelho, L.M.; Rezende, H.C.; Coelho, L.M.; de Sousa, P.A.R.; Melo, D.F.O.; Coelho, N.M.M. Bioremediation of Polluted Waters Using Microorganisms. In Advances in Bioremediation of Wastewater and Polluted Soil; Shiomi, N., Ed.; IntechOpen: London, 2015. https://doi.org/10.5772/60770
https://doi.org/10.5772/60770

[8] Shestopalov, O.V.; Bakharieva, G.Yu.; Mamedova, O.O.; Tverdokhliebova, N.Ye.; Yershov, D.I.; Mikheienko (Yashenko), L.О.; Sobol, Yu.О.; Yevtushenko, N.S.; Vas'kovets, L.А.; Chirkina, М.А. Okhorona Navkolyshn'oho Seredovyshcha vid Zabrudnennya Naftoproduktamy: Navch. Posib.; NTU "KhPI": Kharkiv, 2015.

[9] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15(2), 239-246. https://doi.org/10.23939/chcht15.02.239
https://doi.org/10.23939/chcht15.02.239

[10] Loginova, O.O.; Dang, T.T.; Belousova, E.V.; Shalimova, S.S.; Shevchenko, M.Yu.; Grabovich M.Yu. Boidegradatsiya Nefteproduktov v Pochve Shtammami Mikroorganizmov Roda Acinetobacter. Organizatsiya i Regulyatsiya Fiziologo-Biokhimicheskikh Processov 2010, (12), 129-136.

[11] Zhao, Z.; Wong, J.W.C. Biosurfactants from Acinetobacter calcoaceticus BU03 Enhance the Solubility and Biodegradation of Phenanthrene. Environ. Technol. 2009, 30(3), 291-299. https://doi.org/10.1080/09593330802630801
https://doi.org/10.1080/09593330802630801

[12] Toren, A.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Emulsifying Activities of Purified Alasan Proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 2001, 67(3), 1102-1106. https://doi.org/10.1128/AEM.67.3.1102-1106.2001
https://doi.org/10.1128/AEM.67.3.1102-1106.2001

[13] Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12(3), 337-340. https://doi.org/10.23939/chcht12.03.337
https://doi.org/10.23939/chcht12.03.337

[14] Scherrer, P.; Mille, G. Biodegradation of Crude Oil in an Experimentally Polluted Peaty Mangrove Soil. Mar. Pollut. Bull. 1989, 20(9), 430-432. https://doi.org/10.1016/0025-326X(89)90061-1
https://doi.org/10.1016/0025-326X(89)90061-1

[15] Poyedinok, N.; Belan, M.; Grishchenko, G. Biodestraсtion of Water-Oil, Run-off Hydrocarbons by Mixed Culture Microorganisms. Biotechnol. Lett. 1995, 17(11), 1273-1278. https://doi.org/10.1007/BF00128401
https://doi.org/10.1007/BF00128401

[16] Miller, J.I.; Techtmann, S.; Fortney, J.; Mahmoudi, N.; Joyner, D.; Liu J.; Olesen, S.; Alm, E.; Fernandez, A.; Gardinali, P. et al. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front. Microbiol. [Online] 2019, 10, 995. https://doi.org/10.3389/fmicb.2019.00995. (accessed Oct 03, 2022).
https://doi.org/10.3389/fmicb.2019.00995

[17] Heider, J.; Spormann, A.M.; Beller, H.R.; Widdel, F. Anaerobic Bacterial Metabolism of Hydrocarbons. FEMS Microbiol. Rev. 1999, 22(5), 459-473. https://doi.org/10.1111/j.1574-6976.1998.tb00381.x
https://doi.org/10.1111/j.1574-6976.1998.tb00381.x

[18] Labutova, N.M. Sposob Vydeleniya Shtammov Mikroorganizmov-Destruktorov Nefti. RU2624667C1, July 5, 2017.

[19] Ellis, B.; Balba, M.T.; Theile, P. Bioremediation of Oil Contaminated Land. Environ. Technol. 1990, 11(5), 443-454. https://doi.org/10.1080/09593339009384884
https://doi.org/10.1080/09593339009384884

[20] Chugunov, V.A.; Ermolenko, Z.M.; Zhigletsova, S.K.; Martovetskaya, I.I.; Mironova, R.I.; Zhirkova, N.A.; Kholodenko, V.P.; Urakov, N.N. Development and Application of a Liquid Preparation with Oil-Oxidizing Bacteria. Appl. Biochem. Microbiol. 2000, 36(6), 577-581. https://doi.org/10.1023/A:1026696506947
https://doi.org/10.1023/A:1026696506947

[21] Chobotarov, A.; Volkogon, M.; Voytenko, L.; Kurdish, I. Accumulation of Phytohormones by Soil Bacteria Azotobacter vinelandii and Bacillus subtilis under the Influence of Nanomaterials. J. Microbiol. Biotechnol. Food Sci. 2017, 7(3), 271-274. http://doi.org/10.15414/jmbfs.2017/18.7.3.271-274
https://doi.org/10.15414/jmbfs.2017/18.7.3.271-274

[22] Krupska, T.V.; Turova, A.A.; Gun'ko, V.M.; Turov, V.V. Influence of Highly Dispersed Materials on Physiological Activity of Yeast Cells. Biopolym. Cell. 2009, 25(4), 290-297. http://doi.org/10.7124/bc.0007E8
https://doi.org/10.7124/bc.0007E8

[23] Turov, V.V.; Gun'ko, V.M. Klasterizovannaya voda i puti ee ispol'zovaniya; Naukova Dumka: Kyiv, 2011.

[24] Turov, V.V.; Gun'ko, V.M.; Pakhlov, E.M.; Krupska, T.V.; Tsapko, M.D.; Charmas, B.; Kartel, M.T. Influence of Hydrophobic Nanosilica and Hydrophobic Medium on Water Bound in Hydrophilic Components of Complex Systems. Colloids Surf. A Physicochem. Eng. Asp. 2018, 552, 39-47. https://doi.org/10.1016/j.colsurfa.2018.05.017
https://doi.org/10.1016/j.colsurfa.2018.05.017

[25] Protsak, I.; Gun'ko, V.M.; Turov, V.V.; Krupska, T.V.; Pakhlov, E.M.; Zhang, D.; Dong, W.; Le, Z. Nanostructured Polymethylsiloxane/Fumed Silica Blends. Materials 2019, 12(15), 2409. https://doi.org/10.3390/ma12152409
https://doi.org/10.3390/ma12152409

[26] Krupskaya, T.V.; Gun'ko, V.M.; Protsak, I.S.; Yelahina, N.V.; Turov, V.V. Composites Based on Succinic Acid and Fumed Amorphous Silicas. Theor. Exp. Chem. 2020, 56(1), 50-56. https://doi.org/10.1007/s11237-020-09640-8
https://doi.org/10.1007/s11237-020-09640-8

[27] Gun'ko, V.M.; Turov, V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena, 1st ed.; Taylor & Francis, 2013. https://doi.org/10.1201/b14202
https://doi.org/10.1201/b14202

[28] Aksnes, D.W.; Kimtys, L. 1H and 2H NMR Studies of Benzene Confined in Porous Solids: Melting Point Depression and Pore Size Distribution. Solid State Nucl. Magn. Reson. 2004, 25(1-3), 146-152. https://doi.org/10.1016/j.ssnmr.2003.03.001
https://doi.org/10.1016/j.ssnmr.2003.03.001

[29] Petrov, O.V.; Furo, I. NMR Cryoporometry: Principles, Applications and Potential. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 54(2), 97-122. https://doi.org/10.1016/j.pnmrs.2008.06.001
https://doi.org/10.1016/j.pnmrs.2008.06.001

[30] Glushko, V.P. Termodinamicheskiye svoystva individualnykh veshchestv; Nauka: Moscow, 1978.