Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Influence of the Porous Structure of V2O5-ZrO2-SiO2 Catalyst on Reaction of Propane Dehydrogenation

Antonina Redkina1, Nadezhda Konovalova1, Nikolay Kravchenko1, Volodymyr Strelko1
Affiliation: 
1 Institute of Sorption and Problem Endoecology of NAS of Ukraine, 13 Gen. Naumov St., Kyiv 03164, Ukraine; antonina.redkina@ukr.net
DOI: 
https://doi.org/10.23939/chcht16.02.259
AttachmentSize
PDF icon full_text.pdf661.11 KB
Abstract: 
A spherically granular, amorphous, mesoporous catalyst was obtained by supporting V2O5 on synthesized by direct sol-gel method of ZrO2-SiO2 hydrogel and was identified by SEM, XRD and N2 adsorption / desorption. It is shown that its hydrothermal and alcohol treatment increases the specific surface, volume and width of pores and leads to an increase in the yield of propylene in the reaction of propane dehydrogenation and decreases the temperature of reaching its high values.
References: 

[1] Liu, G.; Zhao, Z.-J.; Wu, T.; Zeng, L.; Gong, J. Nature of the Active Sites of VOx/Al2O3 Catalysts for Propane Dehydrogenation. ACS Catal. 2016, 6, 5207-5214. https://doi.org/10.1021/acscatal.6b00893
https://doi.org/10.1021/acscatal.6b00893

[2] Rodemerck, U.; Stoyanova, M.; Kondratenko, E.V.; Linke D. Influence of the Kind of VOx Structures in VOx/MCM-41 on Activity, Selectivity and Stability in Dehydrogenation of Propane and Isobutane. J. Catal. 2017, 352, 256-263. https://doi.org/10.1016/j.jcat.2017.05.022
https://doi.org/10.1016/j.jcat.2017.05.022

[3] Zhao, J.-Z.; Wu, T.; Xiong, C.; Sun, G.; Mu, R.; Zeng, L.; Gong, J. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VOx/γ-Al2O3 Catalysts with Improved Stability. Angew. Chem. Int. Ed. 2018, 57, 6791-6795. https://doi.org/10.1002/ange.201800123
https://doi.org/10.1002/ange.201800123

[4] Nawaz, Z. Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review. Rev. Chem. Eng. 2015, 31, 413-436. https://doi.org/10.1515/revce-2015-0012
https://doi.org/10.1515/revce-2015-0012

[5] Sattler, J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114 (20), 10613-10653. https://doi.org/10.1021/cr5002436
https://doi.org/10.1021/cr5002436

[6] Pham, H.N.; Sattler, J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal., 2016, 6, 2257-2264. https://doi.org/10.1021/acscatal.5b02917
https://doi.org/10.1021/acscatal.5b02917

[7] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Comparative Study of Propane Dehydrogenation Over V-, Cr-, and Pt-Based Catalysts: Time On-Stream Behavior and Origins of Deactivation. J. Catal. 2012, 293, 67-75. https://doi.org/10.1016/j.jcat.2012.06.005
https://doi.org/10.1016/j.jcat.2012.06.005

[8] Zazhigalov, V.A.; Konovalova, N.D.; Redkina, A.V.; Khomenko, K.N. Sravnitelnoe Issledovanie Degidrirovaniia Propana na VOx/MCM-41 i VOx/Ti-MCM-41 s Polucheniem Propilena i Vodoroda. Ukr. Khim. Zh. 2013, 79 (11), 63-72.

[9] Redkina, A.V.; Konovalova, N.D.; Khomenko, K.N. Degidrirovanie Propana na VxOy/H-Ti-MCM-41. Zh. Khim. Phis. ta Tekhnol. Poverkhni, 2014, 5 (2), 174-189.

[10] Cavani, F.; Ballarini, N.; Cericola, A. Oxidative Dehydrogenation of Ethane and Propane: How far from Commercial Implementation? Catal. Today, 2007, 127, 113-131. https://doi.org/10.1016/j.cattod.2007.05.009
https://doi.org/10.1016/j.cattod.2007.05.009

[11] Otroshchenko, T.; Kondratenko, V.A.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. ZrO2-Based Unconventional Catalysts for Non-Oxidative Propane Dehydrogenation: Factors Determining Catalytic Activity. J. Catal. 2017, 348, 282-290. https://doi.org/10.1016/j.jcat.2017.02.016
https://doi.org/10.1016/j.jcat.2017.02.016

[12] Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D. et al. Controlling Activity and Selectivity of Bare ZrO2 in Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 585, 117189. https://doi.org/10.1016/j.apcata.2019.117189
https://doi.org/10.1016/j.apcata.2019.117189

[13] Jeon, N.; Choe, H.; Jrong, B.; Yun, Y. Cu-Promoted Zirconia Catalysts for Non-Oxidative Propane Dehydrogenation. Appl. Catal. A-Gen. 2019, 586, 117211. https://doi.org/10.1016/j.apcata.2019.117211
https://doi.org/10.1016/j.apcata.2019.117211

[14] Redkina, A.V.; Konovalova, N.D.; Kravchenko, N.V.; Strelko, V.V. Degidrirovanie Propana v Propilen na V2O5, Nanesennom na Micro-Mezoporistuiu Sistemu Oksidov ZrO2-SiO2-TiO2. Ukr. Khim. Zh., 2018, 84 (7), 43-59.

[15] Redkina A.V., Konovalova N.D., Strelko V.V.: Sposib Oderzhannia Katalizatora Dehidruvannia Propanu v Propilen. Patent UA 131758 U, January 25, 2019.

[16] Karakoulia, S.A.; Triantafyllidis, K.S.; Lemonidou, A.A. Preparation and Characterization of Vanadia Catalysts Supported on Non-Porous, Microporous and Mesoporous Silicates for Oxidative Dehydrogenation of Propane (ODP). Micropor. Mesopor. Mater. 2008, 110, 157-166. https://doi.org/10.1016/j.micromeso.2007.10.027
https://doi.org/10.1016/j.micromeso.2007.10.027

[17] Selvam, P.; Dapurkar, S.E. The Effect of Vanadium Sources on the Synthesis and Catalytic Activity of VMCM-41. J. Catal. 2005, 229, 64-71. https://doi.org/10.1016/j.jcat.2004.10.005
https://doi.org/10.1016/j.jcat.2004.10.005

[18] Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199-217. https://doi.org/10.1016/0920-5861(94)80003-0
https://doi.org/10.1016/0920-5861(94)80003-0

[19] Cimino, A.; Cordischi, D.; De Rossi, S. Ferraris, G.; Gazzoli, D.; Indovina, V.; Minelli, G.; Occhiuzzi, M.; Valigi, M. Studies on Chromia/Zirconia Catalysts I. Preparation and Characterization of the System. J. Catal. 1991, 127, 744-760. https://doi.org/10.1016/0021-9517(91)90196-B
https://doi.org/10.1016/0021-9517(91)90196-B

[20] Zhao, B.Y.; Xu, X.P.; Ma, H.R.; Sun, D.H.; Gao. J.M. Monolayer Dispersion of Oxides and Salts on Surface of ZrO2 and Its Application in Preparation of ZrO2-Supported Catalysts with High Surface Areas. Catal. Lett. 1997, 45, 237-244. https://doi.org/10.1023/A:1019048503124
https://doi.org/10.1023/A:1019048503124

[21] Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides. Catal. Today, 1994, 20, 185-197. https://doi.org/10.1016/0920-5861(94)80002-2
https://doi.org/10.1016/0920-5861(94)80002-2

[22] Raju, V.; Jaenicke, S.; Chuah, G.-K. Effect of Hydrothermal Treatment and Silica on Thermal Stability and Oxygen Storage Capacity of Ceria-Zirconia. Appl. Catal. B, 2009, 91, 92-100. https://doi.org/10.1016/j.apcatb.2009.05.010
https://doi.org/10.1016/j.apcatb.2009.05.010

[23] He, X.; Zhang, H.; Li ,Y.; Hong, C.Q.; Zhao, J.P. Preparation and Structural Characterization of SiO2-ZrO2 Aerogels. Key Eng. Mater. 2007, 336-338, 2282-2285. https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282
https://doi.org/10.4028/www.scientific.net/KEM.336-338.2282

[24] Sing, K.S.W.; Everett, D.H.; Haul. R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619. https://doi.org/10.1351/pac198254112201
https://doi.org/10.1351/pac198254112201

[25] Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase Transformation in the Surface Region of Zirconia Detected by UV Raman Spectroscopy. J. Phys. Chem. B, 2001, 105, 8107-8111. https://doi.org/10.1021/jp010526l
https://doi.org/10.1021/jp010526l

[26] Khodakov, A.; Yang, J.; Su, S.; Iglesia, E.; Bell, A.T. Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation. J. Catal. 1998, 177, 343-351. https://doi.org/10.1006/jcat.1998.2143
https://doi.org/10.1006/jcat.1998.2143

[27] del Monte F., Larsen W., Mackenzie J.D. Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides. J. Am. Chem. Soc. 2000, 83 (3), 628-634. https://doi.org/10.1111/j.1151-2916.2000.tb01243.x
https://doi.org/10.1111/j.1151-2916.2000.tb01243.x

[28] Bosman, H.J.M.; Kruissink, E.C.; van der Spoel, J.; van den Brink, F. Characterization of the Acid Strength of SiO2-ZrO2 Mixed Oxides. J. Catal. 1994, 148, 660-672. https://doi.org/10.1006/jcat.1994.1253
https://doi.org/10.1006/jcat.1994.1253

[29] Sokolov, S.; Stoyanova, M.; Rodemerck, U.; Linke, D.; Kondratenko, E.V. Effect of Support on Selectivity and On-Stream Stability of Surface VOx Species in Non-Oxidative Propane Dehydrogenation. Catal. Sci. Technol. 2014, 4, 1323-1332. https://doi.org/10.1039/C3CY01083J
https://doi.org/10.1039/c3cy01083j

[30] Sokolov, S.; Bychkov, V.Yu.; Stoyanova, M.; Rodemerck, U.; Bentrup, U.; Linke, D.; Tyulenin. Y.P.; Korchak, V.N.; Kondratenko, E.V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation. ChemCatChem 2015, 7, 1691-1700. https://doi.org/10.1002/cctc.201500151
https://doi.org/10.1002/cctc.201500151

[31] Fujdala, K.L.; Tilley, T.D. Thermolytic Molecular Precursor Routes to Cr/Si/Al/O and Cr/Si/Zr/O Catalysts for the Oxidative Dehydrogenation and Dehydrogenation of Propane. J. Catal. 2003, 218, 123-134. https://doi.org/10.1016/S0021-9517(03)00141-6
https://doi.org/10.1016/S0021-9517(03)00141-6

[32] Maddah H.A. A Comparative Study between Propane Dehydrogenation (PDH) Technologies and Plants in Saudi Arabia. Am. Sci. Res. J. Eng., Technol., Sci. 2018, 45, 49-63.