Mathematical modeling of subdiffusion impedance in multilayer nanostructures
Attachment | Size |
---|---|
2015_2_2_154_159.pdf | 891.72 KB |
Abstract:
The model of impedance subdiffusion based on the Cattaneo equation in fractional derivatives in applications to multilayer nanostructures is considered. Nyquist diagrams with changes of the parameter $\tau$ (time for which the flow is delayed with respect to the concentration gradient) and the subdiffusion coefficient $D_{\alpha }$ are calculated.
References:
- The Electrochemical Impedance / Z. Stoynov, et al. Moscow, Science, 1991. (in Russian).
- Bisquert J., Compte A. Theory of the electrochemical impedance of anomalous diffusion. J. Electroanalytical Chem. 499, 112–120 (2001).
- Impedance spectroscopy. Theory, experiment and application / Eds.: E. Barsoukov, J. R. Macdonald. Canada: Wiley interscience, 2005.
- Grygorchak I., Ponedilok G. Impedance Spectroscopy. Lviv. Lviv Polytechnic National University, 2011. (in Ukrainian).
- Bertoluzzi L., Boix P. P., Mora-Sero I., Bisquert J. Theory of Impedance Spectroscopy of Ambipolar Solar Cells with Trap Mediated Recombination. J. Phys. Chem. C. 118, 16574–16580 (2014).
- Bisquert J., Bertoluzzi L., Carcia-Belmonte G., Mora-Sero I. Theory of Impedance and Capacitance Spectroscopy of Solar Cells with Dielectric Relaxation, Drift-Diffusion Transport and Recombination. J. Phys. Chem. C. 118, 18983–18991 (2014).
- Bertoluzzi L., Lopez Varo P., Tejada J. A. J., Bisquert J. Charge transfer processes at the semiconductor/electrolyte interface for solar fuels production: insight from impedance spectroscopy. J. Mater. Chem. A. (2015), (in press).
- Umeda M., Dokko K., at all. Electrochemical impendance study of Li-ion insertion into mesocarbon microbead single particle electrode (Part 1. Graphitized carbon). Electrochim. 47, 885–890 (2001).
- Hjeim A.-K. Lindbergh G. Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impendance spectroscopy (EIS). Electrochim. Acta. 47, 1747–1759 (2002).
- Bishchaniuk T. M., Grygorchak I. I., Ivashchyshyn F. O. Multilayer Semiconductor clathrates-cfvitand complex with a fractal quest system. Phys. Suf. Eng. 12, n.3, 360–371 (2014).
- Report on the R and D project “The physical processes and their mathematical modeling in nanohybrided structures of sensory and energy accumulative devices” (R and D project supervised by Kostrobij P.), Lviv Polytechnic National University, Lviv, 2014. (in Ukrainian).
- Compter A.,and Metzler R. The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997).
- Sahimi M. Non-linear and non-local transport procesess in heterogeneous media: from long-range correlated percolation to fracture and materials breakdawn. Phys. Rep. 306, n.4, 213–395 (1998).
- Metzler R., and Klafter J. The random walk’s quide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000).
- Metzler R., and Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161–R208 (2004).
- Bisquert J. Fractional Diffusion in the Multiple-Trapping Regime and Revision of the Equivalence with the Continuos-Time Random Walk. Phys. Rev. Lett. 91, n.1, 010602(1–4) (2003).
- Bisquert J. Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination. Phys. Rev. E. 72, 011109 (2005).
- Kosztoiowicz T., Dworecki K., and Mrowczynski S. How to Measure Subdiffusion Parameters. Phys. Rev. Lett. 94, 170602 (2005).
- Kosztoiowicz T., Dworecki K., and Mrowczynski S. Measuring subdiffusion parameters. Phys. Rev. E. 71, 041105 (2005).
- Korosak D., Cvikl B., Kramer J, Jecl R., Prapotnik A. Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system. J. Contain. Hydrol. 92, 1–9 (2007).
- Uchaikin V. The Method of Fractional Derivatives. Ulyanovsk, “Artichoke”, 2008. (in Russian).
- Shibatov R., Uchaikin V. Fractional Differential Approach to Dispersive Transfer in Semiconductors. Usp. fiz. nauk. 179, n.10, 1079–1109 (2009). (in Russian).
- Kosztolowicz T., Lewandowska K. D. Hyperbolic subdiffusion impedanse. J. Phys. A: Math. Theor. 42, 055004 (2009).
- Kant R., Kumar R., and Yadav V. K. Theory of Anomalous Diffusion Impedance of Realistic Fractal Electrode. J. Phys. Chem. C. 112, 4019-4023 (2008).
- Rekhviashvili S., Mamchuyev M. Model of Drift-Diffusion Transport of Charge Carriers in the Layers of Fractal Structure. Physics of Solid Body. 58, n.4, 763–766 (2016). (in Russian).
Bibliography:
Math. Model. Comput. Vol.2, No.2, pp.154-159 (2015)