Identification of mass-transfer coefficient in spatial problem of filtration

Bomba A. Ya., Safonyk A. P.
AttachmentSize
PDF icon 2014_1_2_135_143.pdf307.84 KB
Abstract: 
A modeling problem of the process of liquid multi component decontamination by a spatial filter is considered, it takes into account the reverse influence of decisive factors (contamination concentrations of liquid and sediment) on characteristics (coefficient of porosity, diffusion) of the medium and gives us the possibility to determine small mass transfer coefficient under the conditions of prevailing of convective constituents over diffusive ones. An algorithm of the solution of the corresponding nonlinear singular disturbed inverse problem of "convection-diffusion mass transfer" type is suggested.
References: 
  1. Elimelech M. Predicting collision efficiencies of colloidal particles in porous media. Water Research. 26(1), 1 (1992).
  2. Elimelech M. Particle deposition on ideal collectors from dilute flowing suspensions: Mathematical formulation, numerical solution and simulations. Separations Technology. 4, 186 (1994).
  3. Jegatheesan V. Effect of surface chemistry in the transient stages of deep bed filtration. Ph Dissertation. University of Technology Sydney. (1999).
  4. Johnson P., Elimelech M. Dynamics of colloid deposition in porous media: Blocking based on random sequential adsorption. Langmuir. 11(3), 801 (1995).
  5. Ison C. R., Ives K. J. Removal mechanisms in deep bed filtration. Che. Engng. Sci. 24, 717 (1969).
  6. Ives K. J. Rapid filtration. Water Research. 4(3), 201 (1970).
  7. Petosa A. R., Jaisi D. P., Quevedo I. R., Elimelech M., Tufenkji N. Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions. Environmental Science Technology. 44, 6532 (2010).
  8. Chaplia Ye. Ya., Chernukha O. Yu. Mathematical modeling of diffusion processes in accidental and regular structures. Naukova dumka. (2009).
  9. Bomba А. Ya., Baranovskiy S. V., Prisyazhnyk I. M. Nonlinear singularly perturbed problem of "convection – diffusion". Rivne: NUWM. (2008).
  10. Bomba А. Ya., Gavriluk V. I., Safonyk А. P., Fursachyk О. А. Nonlinear filtering problem of the type “diffusion-filtration-mass transfer” under conditions of incomplete data. Monograph. Rivne: NUWM. (2011).
  11. Ivanchov N. I. On the definition of the time-dependent leading coeffcient in a parabolic equation. Sib. mat. journal. 39(3), 539 (1998).
  12. Kabanihin S. I. Inverse and incorrect problems.Novosibirsk: Siberian scientific publishing (2009).
  13. Mints D. М. Theoretical bases of water treatment technology. М.: Stroyizdat (1964).
  14. Sergienko I. V., Deineka V. S. Solutions of combined inverse problems for parabolic multi-component distributed systems. Cybernetics and Systems Analysis. 5, 48 (2007).
  15. Sergienko I. V., Deineka V. S. Identification by gradient methods of the diffusion problems parameters in nanoporous medium. Problems of control and Informatics. 6, 5 (2010).
Bibliography: 
Math. Model. Comput. Vol.1, No.2, pp.135-143 (2014)