MUTATION OF THE DROSOPHILA MELANOGASTER L. UNDER THE INFLUENCE OF THE ELECTROMAGNETIC RADIATION

Volodymyr Nykyforov, Oksana Sakun
AttachmentSize
PDF icon full_text.pdf394 KB
Abstract: 
Brief results of the previous studies of the effect of electromagnetic radiation on the fruit flies are quoted. The influence of electromagnetic radiation of industrial frequency on the living organisms has been investigated. Correlative dependence between phenotype Drosophila melanogaster L., duration and intensity of harmful factors has been established. Phenotypic manifestations have been fixed and Drosophila melanogaster L. mutation under the constant influence of the magnetic field induction from 2,25 to 20 μТ in three generations of test objects have been characterized. The dependence of the increased frequency of mutations occurrence and the increase of their diversity caused by the increase of magnetic field induction has been revealed.
References: 

[1] Pierce, Benjamin A. Genetics: A Conceptual Approach (2-nd
ed.). W. H. Freeman, 2004.
[2] Adams M. D., Celniker S. E., Holt R. A. The genome
sequence of Drosophila melanogaster. Science, 2000.
[3] James H. Sang (2001-06-23). Drosophila melanogaster: The
Fruit Fly. In Eric C. R. Reeve. Encyclopedia of genetics.
USA: Fitzroy Dearborn Publishers, I. p. 157.
[4] Medvedev N. N. Practical genetics, M.: Publishing house
“Science”, 1968, p. 20.
[5] Ginter S. K., Bulyzhenkov W. E. Drosophila v
experimentalnoy genetike, Novosibirsk, 1978, p. 24.
[6] Lychkina L. A., Chromyh Y. M., Sharygyn V. I. Sensitive
mutant mus(2)201G1 to metilmetakrilata and the influence of
ultraviolet radiation and impaired DNA repair in
UV-irradiated cells // Genetics. 1982, Vol. 18, No. 4.
[7] Chromyh Y. M., Sharygyn V. I., Varencova E. P. Analysis of
fertility and frequency of dominant lethal mutations in
gamma-irradiated females mutant rad (2)201G1 // Genetics,
1985, So 11, No. 9, 14–94.
[8] Moss I. B., Savchenko V. K. Genetic monitoring of
experimental populations Drosophila under irradiation and
the impact of antimutagene melanin // Radiobiology, 1986,
26 so, No. 1, 41–43.
[9] Shpigelman V. S., Fuchs H. E, Safaev R. D, Belitsky G. A.
Specificity genotoxic action of carcinogenic aromatic
compounds on mus-mutants of Drosophila // Bulletin of
experimental biology, 1991, No. 6, 521–523.
[10] Ratner V. A., Bubenshikova E. V., Vasileva L. A.. Extension
induction transposes IGE after gamma-irradiation in isogenic
Drosophila melanogaster // Genetics, 2001, 37 so, No. 4,
485–493.
[11] Kniazeva I. R. Vplyv electromagnitnogo vyprominyvannya
na Drosophila: the dissertation on competition of a scientific
degree of candidate of biological Sciences, Tomsk. 2001, 18 p.
[12] Chernova G., Vorsobina N. Influence of low-intensity pulsed
laser radiation on the basic parameters of aging in Drosophila
melanogaster // Radiobiology, 2002, 42 so, No. 3, p. 334.
[13] Sheremet O. A, Azarova S. V. Drosophila as a test-object dly
ocinky nebezpeku zabrudnyychih rechovun, Conference
Materials, Russia, Tomsk Polytechnic University, 2005, 156 p.
[14] Reiter L. T., Potocki L., Chien S., Gribskov M., Bier E.
Systematic Analysis of Human Disease-Associated Gene
Sequences In Drosophila melanogaster, 2001, Genome
Research http://www.pubmedcentral.nih.gov/ articlerender.
fcgi? tool= pmcentrez&artid=311089.
[15] Fedorov S. A., Nokkala S., Omelyanchuk L. V. Genetic
screening meiotic mutations in the mosaic clones germline
female Drosophila melanogaster // Genetics, 2001, 37 so,
No. 12, 162–163.
[16] Bier lab 2008. Homophila: Human disease to Drosophila
disease database. University of California, San Diego. http://
superfly.ucsd.edu/homophila. Retrieved August 11, 2009.
[17] Zagirnyak M., Nykyforov V., Chornyi O., Sakun O.,
Panchenko K. Experimental research of electromechanical
and biological systems compatibility // Przeglad
Elektrotechniczny, 2016, R. 92 № 1, 128–131.