Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Obtaining Transparent Composites Based on Hybrid Silicate Hydrogels as Special Materials for Increasing the Fire Resistance of Glass Structures

Solomiia Kapatsila1, Nataliia Bukartyk1, Nataliia Nosova1, Volodymyr Samaryk1, Serhii Varvarenko1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine nataliia.h.nosova@lpnu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Developing a new generation of transparent hydrogel firefighting mineral-polymeric materials is an urgent task. These composites are used to produce refractory glass structures, particularly double-glazed windows. These double-glazed windows are multilayer structures made of silicate glass sheets, with gaps filled by a transparent material that turns opaque under flame exposure, reducing heat load and maintaining structural integrity for a specified duration. This article presents research on the synthesis and properties of transparent polysilicon hydrogels, used as a component in hybrid mineral-organic composites for manufacturing fire-resistant transparent glass structures. A method for producing polysilicate acid hydrogels in the presence of polyvalent metal ions has been developed. Full-factor experiment results established the sol-gel process time frame, influenced by many factors. The research demonstrates the feasibility of creating a transparent hybrid polymer-mineral hydrogel material containing polyvalent refractory salts and polysilicate acid, which can transform into a highly porous refractory material under high temperatures.
References: 

[1] El Sayed, M. M. Production of Polymer Hydrogel Composites and Their Applications. J. Polym. Environ. 2023, 31, 2855–2879. https://doi.org/10.1007/s10924-023-02796-z
[2] Rezvanian, M.; Amin, M. C. I. M.; Ng, S.-F. Development and Physicochemical Characterization of Alginate Composite Film Loaded with Simvastatin as a Potential Wound Dressing. Carbohydr. Polym. 2016, 137, 295–304. https://doi.org/10.1016/j.carbpol.2015.10.091
[3] Ning, X.; Huang, J.; A, Y.; Yuan, N.; Chen, C.; Lin, D. Research Advances in Mechanical Properties and Applications of Dual Network Hydrogels. Int. J. Mol. Sci. 2022, 23, 15757. https://doi.org/10.3390/ijms232415757
[4] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical properties of hydrogels filled with dispersed nanoparticles. Chem. Chem. Technol. 2017, 11, 449–453. https://doi.org/10.23939/chcht11.04.449
[5] Tkachenko, O.; Nikolaichuk, A.; Fihurka, N.; Backhaus, A.; Zimmerman, J.; Strømme, M.; Budnyak, T. Kraft Lignin-Derived Microporous Nitrogen-Doped Carbon Adsorbent for Air and Water Purification. ACS Appl. Mater. Interfaces 2024, 16, 3427–3441. https://doi.org/10.1021/acsami.3c15659
[6] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312–317. https://doi.org/10.23939/chcht14.03.312
[7] Pan, Z.; Lv, Y.; Chen, Y.; Qian, X. Enhanced Strength and Self-Healing Properties of (Ca-Mg)2/PVA IPN Hydrogel Used for shot-Membrane Waterproofing Materials. J. Polym. Res. 2020, 27, 114. https://doi.org/10.1007/s10965-020-02105-5
[8] Cui, H.; Chen, F.;Liao, Y.; Liang, Z.; Luo, L.; Wang, X.; Guo, H.; Zhao, J.; Meng, G.; Ouyang, G. et al. Hydrophobic Hydrogels as Internal Curing Agent for Concrete: The Double Benefit of Super High Water Content and excellent anti-Ion Permeability. Comp. Com. 2022, 33, 101236. https://doi.org/10.1016/j.coco.2022.101236
[9] Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z. Durability of ultra-High Performance Concrete. Const. Build. Mat. 2020, 255, 119296. https://doi.org/10.1016/j.conbuildmat.2020.119296
[10] Fitzgerald, R. W. Fire Defenses. Build. Fire Perfor. Anal. 2005, 12, 11–18. https://doi.org/10.1002/0470863285.ch2
[11] Park, H.; Meacham, B. J.; Dembsey, N. A.; Goulthorpe, M. Integration of Fire Safety and Building Design. Build. Res. Inf. 2014, 42, 696–709. https://doi.org/10.1080/09613218.2014.913452
[12] Muguda, S.; Hughes, P. N.; Augarde, C. E.; Perlot, C.; Bruno, A. W.; Gallipoli, D. Cross-linking of Biopolymers for Stabilizing Earthen Construction Materials. Build. Res. Inf. 2021, 50, 502–514. https://doi.org/10.1080/09613218.2021.2001304
[13] Wang, Q. H. Study of Fire Control Safety of High-Rise Building and Countermeasures. Adv. Mat. Res. 2011, 418–420, 2308–2311. https://doi.org/10.4028/www.scientific.net/AMR.418-420.2308
[14] Nam, J.; Park, K.; Yang, S.; Kim S.; Advancing Building Fire Safety through Heat Resistant and Flame Retardant Hybrid Silicone Sealant. J. Buil. Eng. 2024, 91, 109528. https://doi.org/10.1016/j.jobe.2024.109528
[15] Chow, W. K. Building Fire Safety in the Far East. Archit. Sci. Rev. 2005, 48, 285–294. https://doi.org/10.3763/asre.2005.4836
[16] Bai, B.; Wang, Y.; Lu, L.; Wang, J.; Zhang, D. Fire Resistance and Heat Insulation Properties of Perfusion Type Fireproof Glass. IOP Conf. Ser. Mater. Sci. Eng. 2019, 493, 012009. https://doi.org/10.1088/1757-899x/493/1/012009
[17] Chow, W. K.; Gao, Y. Thermal Stresses on Window Glasses upon Heating. Const. Build. Mater. 2008, 22, 2157–2164. https://doi.org/10.1016/j.conbuildmat.2007.09.004
[18] Stetsyshyn, Y.; Raczkowska, J.; Lishchynskyi, O.; Awsiuk, K.; Zemla, J.; Dąbczyński, P.; Kostruba, A.; Harhay, K.; Ohar, H.; Orzechowska, B. et al. Glass Transition in Temperature-Responsive poly(Butyl Methacrylate) Grafted Polymer Brushes. Impact of Thickness and Temperature on Wetting, Morphology, and Cell Growth. J. Mater. Chem. B 2018, 6, 1613–1621. https://doi.org/10.1039/c8tb00088c
[19] Shao, G.; Wang, Q.; Zhao, H.; Wang, Y.; Sun, J.; He, L.Thermal Breakage of Tempered Glass Façade with Down-Flowing Water Film Under Different Heating Rates. Fire Technol. 2016, 52, 563–580. https://doi.org/10.1007/s10694-015-0499-5
[20] Dundar, U.; Selamet, S. Fire Load and Fire Growth Characteristics in Modern High-Rise Buildings. Fire Saf. J. 2023, 135, 103710. https://doi.org/10.1016/j.firesaf.2022.103710
[21] Kotlík, P.; Doubravová, K.; Horálek, J.; Kubáč, L.; Akrman, J. Acrylic Copolymer Coatings for Protection against UV Rays. J. Cult. Herit. 2014, 15, 44–48. https://doi.org/10.1016/j.culher.2013.01.002
[22] Wang, Y.; Wang, Q.; Wen, J.X.; Sun, J.; Liew, K.M. Investigation of Thermal Breakage and Heat Transfer in Single, Insulated and Laminated Glazing under Fire Conditions. Appl. Therm. Eng. 2017, 125, 662–672. https://doi.org/10.1016/j.applthermaleng.2017.07.019
[23] Mastalska‐Popławska, J.; Izak, P.; Wójcik, Ł.; Stempkowska, A.; Góral, Z.; Krzyżak, A. T.; Habina, I. Synthesis and Characterization of Cross‐Linked Poly(Sodium Acrylate)/Sodium Silicate Hydrogels. Polym. Eng. Sci. 2019, 59, 1279–1287. https://doi.org/10.1002/pen.25111
[24] Astakhova, O.; Bratychak, M., Jr; Kohut, A.; Chervinskyy, T. An Oligomer with Terminal Unsaturated Double Bonds Based on Epidian 5 and Ethylacrylic Acid. Chem. Chem. Technol. 2023, 17, 70–80. https://doi.org/10.23939/chcht17.01.070
[25] Kisała, J.; Ferraria, A. M.; Mitina, N.; Cieniek, B.; Krzemiński, P.; Pogocki, D.; Nebesnyi, R.; Zaichenko, O.; Bobitski, Y. Photocatalytic Activity of Layered MoS2 in the Reductive Degradation of Bromophenol Blue. RSC Adv. 2022, 12, 22465–22475. https://doi.org/10.1039/d2ra03362c
[26] Sydorchuk, V.; Khalameida, S.; Charmas, B.; Ivasiv, V.; Nebesnyi, R.; Shcherban, N. Influence of Hydrothermal, Microwave and Mechanochemical Treatment of Tin Phosphate on Porous Structure and Catalytic Properties. J. Solgel Sci. Technol. 2021, 100, 252–270. https://doi.org/10.1007/s10971-021-05645-4
[27] Krupa, I.; Nedelčev, T.; Račko, D.; Lacík, I. Mechanical Properties of Silica Hydrogels Prepared and Aged at Physiological Conditions: Testing in the Compression Mode. J. Solgel Sci. Technol. 2009, 53, 107–114. https://doi.org/10.1007/s10971-009-2064-5
[28] Shi, X.; Xu, S.; Lin, J.; Feng, S.; Wang, J. Synthesis of SiO2-polyacrylic Acid Hybrid Hydrogel with High Mechanical Properties and Salt Tolerance Using Sodium Silicate Precursor through Sol–Gel Process. Mater. Lett. 2009, 63, 527–529. https://doi.org/10.1016/j.matlet.2008.11.029
[29] Li, B.; Liu, J.; Lyu, F.; Deng, Z.; Yi, B.; Du, P.; Yao, X.; Zhu, G.; Xu, Z.; Lu, J. et al. Mineral Hydrogel from Inorganic Salts: Biocompatible Synthesis, All‐in‐One Charge Storage, and Possible Implications in the Origin of Life. Adv. Funct. Mater. 2021, 32, 2109302. https://doi.org/10.1002/adfm.202109302
[30] Liu, W.; Ge, X.; Zhou, X.; Tang, Y. Thermal Intumescent Behavior of a Gel Containing Silica. RSC Adv. 2015, 5, 33208–33211. https://doi.org/10.1039/c5ra00558b
[31] Pereyra, A. M.; Giudice, C. A. Flame-Retardant Impregnants for Woods Based on Alkaline Silicates. Fire Saf. J. 2009, 44, 497–503. https://doi.org/10.1016/j.firesaf.2008.10.004
[32] Lishchynskyi, O.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Orzechowska, B.; Abalymov, A.; Skirtach, A.G.; Bernasik, A.; Nastyshyn, S.; Budkowski, A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials 2021, 14, 1417. https://doi.org/10.3390/ma14061417
[33] Gaharwar, A. K.; Rivera, C. P.; Wu, C.-J.; Schmidt, G. Transparent, Elastomeric and Tough Hydrogels from poly(Ethylene Glycol) and Silicate Nanoparticles. Acta Biomater. 2011, 7, 4139–4148. https://doi.org/10.1016/j.actbio.2011.07.023
[34] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E.; Majerníková, J. Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials 2020, 13, 2856. https://doi.org/10.3390/ma13122856
[35] Shafranska, O.; Voronov, A.; Kohut, A.; Wu, X.-F.; Akhatov, I. S. Polymer–Metal Complexes as a Catalyst for the Growth of Carbon Nanostructures. Carbon 2009, 47, 3137–3139. https://doi.org/10.1016/j.carbon.2009.06.055
[36] Nosova, N. G.; Samaryk, V. J.; Varvarenko, S. M.; Ferens, M. V.; Voronovska, A. V.; Nagornyak, M. I.; Khomyak, S. V.; Nadashkevych, Z. J.; Voronov, S. A. Porous Polyacrylamide Hydrogels: Preparation and Properties. Voprosy khimii i khimicheskoi tekhnologii 2016, 5-6, 78–86.
[37] Maikovych, O. V.; Nosova, N. G.; Yakoviv, M. V.; Dron, І. А.; Stasiuk, A. V.; Samaryk, V. Ya.; Varvarenko, S. M.; Voronov, S. A. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Voprosy khimii i khimicheskoi tekhnologii 2021, 1, 45–54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54
[38] Zichen, L.; Ting, Z.; Zhiwei, L.; Kong, X.; Sun, Z. Investigation of the Tetraethoxysilane‐Derived Sol–Gel Process by Rheological Oscillation Test and the Effect of Different Synthetic Parameters. J. Appl. Polym. Sci. 2022, 140, e53310.
https://doi.org/10.1002/app.53310
[39] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert W. Surface Activity of new Invertible Amphiphilic Polyesters Based on poly(Ethylene Glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379–385. https://doi.org/10.1016/j.jcis.2008.04.053
[40] Li, H.; Wu, X.; Yang, B.; Li, J.; Xu, L.; Liu, H.; Li, S.; Xu, J.; Yang, M.; Wei, M. Evaluation of Biomimetically Synthesized Mesoporous Silica Nanoparticles as Drug Carriers: Structure, Wettability, Degradation, Biocompatibility and Brain Distribution. Mater. Sci. Eng. C Biomim. Mate.r Sens. Syst. 2019, 94, 453–464. https://doi.org/10.1016/j.msec.2018.09.053