Vol. 7, No. 4, 2013

Chemistry

Stefan Harkov, Dmytro Havrylyuk and Roman Lesyk

SYNTHESIS OF 3.5 SUBSTITUTED TRIAZINO[5,6-D]INDOLES AND 4-THIAZOLIDINONE-TRIAZINO[5,6-D]INDOLE HYBRIDS WITH ANTITUMOR ACTIVITY

Danylo Halytsky Lviv National Medical University 69, Pekarska str, 79010 Lviv, Ukraine; dr_r_lesyk@org.lviv.net

Received: April 18, 2013 / Revised: May 27, 2013 / Accepted: August 28, 2013

© Harkov S., Havrylyuk D., Lesyk R., 2013

Abstract. The synthesis and antitumor activity screening of 1,2,4-triazino[5,6-b]indoles based conjugates were performed. Reaction between 3-mercapto-1,2,4-triazino[5,6-b]indoles and several *N*-arylchloroacetamides yielded 3*S*-substituted 1,2,4-triazino[5,6-b]indoles. Based on 3-hydrazine-1,2,4-triazino[5,6-b]indoles the new 4-thiazolidinones have been synthesized. Seven synthesized compounds were tested for their anticancer activity in NCI60 cell lines.

Keywords: synthesis, triazinoindoles, 4-thiazolidinones, anticancer activity.

1. Introduction

The chemistry of isatin derivatives is particularly interesting because of their variety of biological activities and potential application in medicinal chemistry [1]. The synthesis of 1,2,4-triazino[5,6-*b*]indoles is a promising direction of isatin modification considering their antifungal [2], antiviral [3, 4], and antihypertensive [5] properties. Recently, the antitumor activity evaluation has become a privileged direction of the mentioned compounds investigation [6]. Thus, antitumor agent *Inauhzin* was identified as an inhibitor of SIRT1 activity and suppressor of tumour growth through activation of p53 [7] (Fig. 1).

On the other hand our previous studies allowed us to identify the high antitumor activity of 4-thiazolidinone conjugates with pyrazoline, benzothiazole cycles [8-16] as well as indole-thiazolidinone hybrids [17, 18].

These observations have prompted us to synthesized new 3S-substituted triazino[5, 6-b]indoles and thiazolidinone-triazinoindole hybrids with the hope of discovering active compounds that would elicit anticancer activity.

Antihypertensive agents Fig. 1. Biological activity of 1,2,4-triazino[5,6-b]indoles

2. Experimental

2.1. Materials and Methods

The starting 3-mercapto-1,2,4-triazino[5,6b]indoles [3-5] were obtained according to the methods described previously.

Melting points were measured in open capillary tubes on a BÜCHI B-545 melting point apparatus and are uncorrected. The elemental analyses (C, H, N) were performed using the Perkin-Elmer 2400 CHN analyzer. Analyses indicated by the symbols of the elements or functions were within ± 0.4 % of the theoretical values. The ¹H NMR spectra were recorded on Varian Gemini 300 MHz in DMSO-d₆ or DMSO-d₆+CCl₄ mixture using tetramethylsilane (TMS) as an internal standard. Chemical shifts are reported in ppm units with the use of δ scale.

2.2. Chemistry

General procedure for synthesis of 3S-substituted 1,2,4-triazino[5,6-b]indoles (2.1-2.14). A suspension of compound 1.1-1.3 (3 mmol) and potassium hydroxide (3 mmol) was stirred at r.t. during 5 min, later ethyl chloroacetate or appropriate 2-chloro-*N*-arylacetamide (3.3 mmol) was added and the mixture was refluxed for 5 h in EtOH (10 ml). The obtained powders were filtered off, washed with ethanol and recrystallized with DMF : ethanol (1:2) mixtures.

(1,2,4-Triazino[5,6-b]indole-3-ylsulfanyl)-acetic acid ethyl ester (**2.1**). Yield 78 %, mp 515–517 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.48 (s, 1H, NH), 8.28 (d, 1H, *J* = 7.7 Hz, arom), 7.61 (t, 1H, *J* = 7.5 Hz, arom), 7.53 (d, 1H, *J* = 7.9 Hz, arom), 7.37 (d, 1H, *J* = 7.4 Hz, arom), 4.10 (s, 2H, SCH₂), 3.73 (br.s, 2H, OCH₂), 2.97 (br.s, 3H, CH₂<u>CH₃</u>). Calc. for C₁₃H₁₂N₄O₂S: C, 54.15; H, 4.20; N, 19.43; Found: C, 54.38; H, 4.41; N, 19.64 %.

2-(1,2,4-Triazino[5,6-b]indole-3-ylsulfanyl)-Nphenylacetamide (2.2). Yield 83 %, mp 573–575 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.63 (s, 1H, NH, indole), 10.40 (s, 1H, CONH), 8.30 (d, 1H, J = 7.7 Hz, arom), 7.57-7.73 (m, 4H, arom), 7.45 (t, 1H, J = 7.8 Hz, arom), 7.33 (t, 2H, J = 8.2 Hz, arom), 7.07 (t, 1H, J = 7.3 Hz, arom), 4.29 (s, 2H, SCH₂). Calc. for C₁₇H₁₃N₅OS: C, 60.88; H, 3.91; N, 20.88; Found: C, 67.11; H, 4.12; N, 21.09 %.

2-(1,2,4-Triazino[5,6-b]indole-3-ylsulfanyl)-N-(2trifluoromethylphenyl)acetamide (**2.3**). Yield 86 %, mp 527–529 K. Calc. for C₁₈H₁₂F₃N₅OS: C, 53.60; H, 3.00; N, 17.36; Found: C, 53.94; H, 3.34; N, 17.68 %.

2-(1,2,4-Triazino[5,6-b]indole-3-ylsulfanyl)-N-(4acetylphenyl)acetamide (2.4). Yield 76%, mp 523– 525 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.60 (s, 1H, NH, indole), 10.74 (s, 1H, CONH), 8.29 (d, 1H, J = 7.7 Hz, arom), 7.95 (d, 2H, J = 8.4 Hz, arom), 7.77 (d, 2H, J = 8.4 Hz, arom), 7.68 (t, 1H, J = 7.7 Hz, arom), 7.57 (d, 1H, J = 7.9 Hz, arom), 7.42 (t, 1H, J = 7.3 Hz, arom), 4.34 (s, 2H, SCH₂), 2.54 (s, 3H, CH₃). Calc. for C₁₉H₁₅N₅O₂S: C, 60.47; H, 4.01; N, 18.56; Found: C, 60.68; H, 4.23; N, 18.78 %.

2-(1,2,4-Triazino[5,6-b]indole-3-ylsulfanyl)-N-(4sulfamoylphenyl)acetamide (**2.5**). Yield 80 %, mp 567– 569 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.62 (s, 1H, NH, indole), 10.75 (s, 1H, CONH), 8.30 (d, 1H, J = 7.6 Hz, arom), 7.79 (br.s, 4H, arom), 7.69 (t, 1H, J = 7.2 Hz, arom), 7.58 (d, 1H, J = 8.1 Hz, arom), 7.43 (t, 1H, J = 7.2 Hz, arom), 7.29 (s, 2H, NH₂), 4.32 (s, 2H, SCH₂). Calc. for C₁₇H₁₄N₆O₃S₂: C, 49.27; H, 3.40; N, 20.28; Found: C, 49.03; H, 3.18; N, 20.03 %.

 $\begin{array}{l} 2-(8\text{-}Bromo-1,2,4\text{-}triazino[5,6\text{-}b]indole\text{-}3\text{-}\\ ylsulfanyl)acetamide~(\textbf{2.6}).~Yield~88~\%,~mp>613~K.\\ Calc.~for~C_{11}H_8BrN_5OS:~C,~39.07;~H,~2.38;~N,~20.71;\\ Found:~C,~39.41;~H,~2.54;~N,~20.95~\%.\\ \end{array}$

2-(8-Bromo-1,2,4-triazino[5,6-b]indole-3ylsulfanyl)-N-(2-methoxyphenyl)acetamide (2.7). Yield 85 %, mp 533–535 K. ¹H NMR (400 MHz, DMSO- d_6 +CCl₄): *d* 12.85 (s, 1H, NH, indole), 9.66 (s, 1H, CONH), 8.48 (s, 1H, arom), 8.06 (d, 1H, J = 8.2 Hz, arom), 7.84 (d, 1H, J = 8.5 Hz, arom), 7.54 (d, 1H, J = 8.5 Hz, arom), 7.00-7.06 (m, 2H, arom), 6.90 (t, 1H, J = 8.0 Hz, arom), 4.29 (s, 2H, SCH₂), 3.77 (s, 3H, OCH₃). Calc. for C₁₈H₁₄BrN₅O₂S: C, 48.66; H, 3.18; N, 15.76; Found: C, 48.42; H, 2.96; N, 15.53 %.

2-(8-Bromo-1,2,4-triazino[5,6-b]indole-3ylsulfanyl)-N-(3-methylphenyl)acetamide (**2.8**). Yield 88 %, mp 585–587 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.76 (br.s, 1H, NH, indole), 10.29 (s, 1H, CONH), 8.45 (s, 1H, arom), 7.82 (d, 1H, J == 8.6 Hz, arom), 7.54 (d, 1H, J = 8.6 Hz, arom), 7.46 (s, 1H, arom), 7.39 (d, 1H, J = 8.3 Hz, arom), 7.20 (t, 1H, J = 7.7 Hz, arom), 6.88 (d, 1H, J = 7.5 Hz, arom), 4.28 (s, 2H, SCH₂), 2.27 (s, 3H, CH₃). Calc. for C₁₈H₁₄BrN₅OS: C, 50.48; H, 3.29; N, 16.35; Found: C, 50.74; H, 3.52; N, 16.54 %.

2-(8-Bromo-1,2,4-triazino[5,6-b]indole-3ylsulfanyl)-N-(4-chlorophenyl)acetamide (**2.9**). Yield 77 %, mp 597–599 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.75 (s, 1H, NH, indole), 10.54 (s, 1H, CONH), 8.45 (s, 1H, arom), 7.82 (d, 1H, J = 8.6 Hz, arom), 7.65 (d, 2H, J = 8.8 Hz, arom), 7.53 (d, 1H, J = 8.6 Hz, arom), 7.38 (d, 2H, J = 8.8 Hz, arom), 4.29 (s, 2H, SCH₂). Calc. for C₁₇H₁₁BrClN₅OS: C, 45.50; H, 2.47; N, 15.61; Found: C, 45.18; H, 2.16; N, 15.29 %.

2-(8-Bromo-1,2,4-triazino[5,6-b]indole-3-ylsulfanyl)-N-(2-chloro-5-trifluorophenyl)acetamide

(2.10). Yield 75 %, mp 531–533 K. Calc. for $C_{18}H_{10}BrClF_{3}N_{5}OS$: C, 41.84; H, 1.95; N, 13.55; Found: C, 41.52; H, 1.62; N, 13.18 %.

2-(8-Chloro-1,2,4-triazino[5,6-b]indole-3-

ylsulfanyl)-N-(2-methoxyphenyl)acetamide (2.11). Yield 78 %, mp 529–531 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.90 (s, 1H, NH, indole), 9.69 (s, 1H, CONH), 8.35 (s, 1H, arom), 8.07 (d, 1H, J = 7.0 Hz, arom), 7.71 (d, 1H, J = 8.6 Hz, arom), 7.59 (d, 1H, J = 8.5 Hz, arom), 7.00-7.06 (m, 2H, arom), 6.91 (t, 1H, J = 6.4 Hz, arom), 4.30 (s, 2H, SCH₂), 3.78 (s, 3H, OCH₃). Calc. for C₁₈H₁₄ClN₅O₂S: C, 54.07; H, 3.53; N, 17.51; Found: C, 54.38; H, 3.77; N, 17.84 %.

2-(8-Chloro-1,2,4-triazino[5,6-b]indole-3-

ylsulfanyl)-N-(3-methylphenyl)acetamide (2.12). Yield 85 %, mp 541–543 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): d 12.80 (br.s, 1H, NH, indole), 10.33 (s, 1H, CONH), 8.33 (s, 1H, arom), 7.71 (d, 1H, J = 8.7 Hz, arom), 7.58 (d, 1H, J = 8.7 Hz, arom), 7.48 (s, 1H, arom), 7.41 (d, 1H, J = 8.2 Hz, arom), 7.20 (t, 1H, J = 7.6 Hz, arom), 6.88 (d, 1H, J = 6.7 Hz, arom), 4.29 (s, 2H, SCH₂), 2.29 (s, 3H, CH₃). Calc. for C₁₈H₁₄ClN₅OS: C, 56.32; H, 3.68; N, 18.24; Found: C, 56.53; H, 3.94; N, 18.57 %.

2-(8-Chloro-1,2,4-triazino[5,6-b]indole-3-

ylsulfanyl)-N-(4-chlorophenyl)acetamide (2.13). Yield 81 %, mp 553–555 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.76 (s, 1H, NH, indole), 10.52 (s, 1H, CONH), 8.31 (s, 1H, arom), 7.57-7.67 (m, 4H, arom), 7.36-7.39 (m, 2H, arom), 4.29 (s, 2H, SCH₂). Calc. for C₁₇H₁₁Cl₂N₅OS: C, 50.51; H, 2.74; N, 17.32; Found: C, 50.74; H, 2.95; N, 17.53 %.

2-(8-Chloro-1,2,4-triazino[5,6-b]indole-3-

ylsulfanyl)-N-(4-sulfamoylphenyl)acetamide (2.14). Yield 86 %, mp 563–565 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.81 (s, 1H, NH, indole), 10.77 (s, 1H, CONH), 8.32 (s, 1H, arom), 7.56-7.80 (m, 6H, arom), 7.30 (s, 2H, NH₂), 4.33 (s, 2H, SCH₂). Calc. for C₁₇H₁₃ClN₆O₃S₂: C, 45.49; H, 2.92; N, 18.72; Found: C, 45.24; H, 2.65; N, 18.51 %.

General procedure for synthesis 3-(1,2,4triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4ones (4.1-4.2). A mixture of 50 mmol (1,2,4triazino[5,6-b]indol-3yl)hydrazine 3.1 or 3.2 and 50 mmol trithiocarbonyl diglycolic acid was refluxed in 30 ml of ethanol during 5 h. After cooling the reaction mixture was poured into cold water and the solid mass which separated out was filtered, dried and recrystallized in turn with AcOH.

3-(1,2,4-Triazino[5,6-b]indol-3-ylamino)-2-

thioxothiazolidin-4-ones (**4.1**). Yield 66 %, mp > 473 K. Calc. for $C_{12}H_8N_6OS_2$: C, 45.56; H, 2.55; N, 26.56; Found: C, 45.79; H, 2.32; N, 26.70 %.

3-(8-Chloro-1,2,4-triazino[5,6-b]indol-3-

ylamino)-2-thioxothiazolidin-4-ones (4.2). Yield 59 %, mp > 473 K. Calc. for $C_{12}H_7ClN_6OS_2$: C, 41.09; H, 2.01; N, 23.96; Found: C, 40.88; H, 2.25; N, 24.12 %.

General procedure for synthesis of 5-ylidene-3-(1,2,4-triazino[5,6-b]indol-3-ylamino)-2thioxothiazolidin-4-ones (5.1-5.10, 6.1-6.4). A mixtures of compound 4.1 or 4.2 (3 mmol), appropriate aldehyde or isatin (3.3 mmol) and anhydrous sodium acetate (3 mmol) were refluxed for 2 h in glacial acetic acid (10 ml). The obtained powders were filtered off, washed with methanol and recrystallized with DMF:ethanol (1:2) mixtures.

5-(3-Bromobenzylidene)-3-(1,2,4-triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4-one (5.1). Yield 78 %, mp 593–595 K. Calc. for C₁₉H₁₁BrN₆OS₂: C, 47.21; H, 2.29; N, 17.39; Found: C, 47.54; H, 2.58; N, 17.67 %.

5-(4-Bromobenzylidene)-3-(1,2,4-triazino[5,6b]indol-3-ylamino)-2-thioxothiazolidin-4-one (5.2). Yield 82 %, mp > 613 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.33 (s, 1H, NH, indole), 11.90 (s, 1H, NH), 8.19-8.21 (m, 2H, =CH, arom), 7.66 (br.s, 4H, arom), 7.56 (t, 1H, *J* = 7.6 Hz, arom), 7.49 (d, 1H, *J* = 7.8 Hz, arom), 7.35 (t, 1H, *J* = 7.4 Hz, arom). Calc. for C₁₉H₁₁BrN₆OS₂: C, 47.21; H, 2.29; N, 17.39; Found: C, 47.42; H, 2.41; N, 17.52 %.

5-(4-Chlorobenzylidene)-3-(1,2,4-triazino[5,6b]indol-3-ylamino)-2-thioxothiazolidin-4-one (5.3). Yield 82 %, mp > 613 K. ¹H NMR (300 MHz, DMSO d_6 +CCl₄): d 12.27 (s, 1H, NH, indole), 11.81 (s, 1H, NH), 8.18-8.23 (m, 2H, =CH, arom), 7.73 (d, 2H, J = 8.1 Hz, arom), 7.49-7.57 (m, 4H, arom), 7.36 (t, 1H, J = 7.3 Hz, arom). Calc. for C₁₉H₁₁ClN₆OS₂: C, 51.99; H, 2.53; N, 19.15; Found: C, 52.23; H, 2.77; N, 19.34 %. 5-(4-Fluorobenzylidene)-3-(1,2,4-triazino[5,6-

b]indol-3-ylamino)-2-thioxothiazolidin-4-one (5.4). Yield 75 %, mp > 613 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.25 (s, 1H, NH, indole), 11.74 (s, 1H, NH), 8.26 (s, 1H, =CH), 8.20 (d, 1H, J = 7.6 Hz, arom), 7.75-7.79 (m, 2H, arom), 7.57 (t, 1H, J = 7.5 Hz, arom), 7.49 (d, 1H, J = 7.7 Hz, arom), 7.27-7.38 (m, 3H, arom). Calc. for C₁₉H₁₁FN₆OS₂: C, 54.02; H, 2.62; N, 19.89; Found: C, 54.36; H, 2.95; N, 20.09 %.

5-(4-Methoxybenzylidene)-3-(1,2,4-triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4-one (5.5). Yield 80 %, mp 553–555 K. Calc. for C₂₀H₁₄N₆O₂S₂: C, 55.29; H, 3.25; N, 19.34; Found: C, 55.48; H, 3.57; N, 19.58 %.

5-(4-Dimethylaminobenzylidene)-3-(1,2,4triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4one (5.6). Yield 69 %, mp 563–565 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.48 (s, 1H, NH, indole), 11.16 (s, 1H, NH), 8.23 (br.s, 1H, =CH), 7.84 (br.s, 1H, arom), 7.39-7.59 (m, 5H, arom), 6.89 (br.s, 2H, arom), 3.09 (s, 6H, 2*CH₃). Calc. for $C_{21}H_{17}N_7OS_2$: C, 56.36; H, 3.83; N, 21.91; Found: C, 56.58; H, 4.03; N, 22.13 %.

5-(2,6-Dichlorobenzylidene)-3-(1,2,4-triazino[5,6b]indol-3-ylamino)-2-thioxothiazolidin-4-one (5.7). Yield 85 %, mp 593–594 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.31 (s, 1H, NH, indole), 12.08 (s, 1H, NH), 8.43 (br.s, 1H, =CH), 8.21 (d, 1H, *J* = 7.7 Hz, arom), 7.37-7.61 (m, 6H, arom). Calc. for C₁₉H₁₀Cl₂N₆OS₂: C, 48.21; H, 2.13; N, 17.75; Found: C, 47.98; H, 1.87; N, 17.53 %.

5-(4-Bromobenzylidene)-3-(8-chloro-1,2,4triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4one (5.8). Yield 72 %, mp 618–620 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.44 (s, 1H, NH, indole), 11.95 (s, 1H, NH), 8.23 (br.s, 1H, =CH), 8.21 (s, 1H, arom), 7.66 (br.s, 4H, arom), 7.58 (d, 1H, *J* = 8.5 Hz, arom), 7.50 (d, 1H, *J* = 8.5 Hz, arom). Calc. for C₁₉H₁₀BrClN₆OS₂: C, 44.07; H, 1.95; N, 16.23; Found: C, 44.28; H, 2.17; N, 16.56 %.

5-(4-Chlorobenzylidene)-3-(8-chloro-1,2,4triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4one (**5.9**). Yield 70 %, mp > 623 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.44 (s, 1H, NH, indole), 11.96 (s, 1H, NH), 8.24 (br.s, 1H, =CH), 8.20 (s, 1H, arom), 7.73 (d, 2H, *J* = 8.4 Hz, arom), 7.48-7.56 (m, 4H, arom). Calc. for C₁₉H₁₀Cl₂N₆OS₂: C, 48.21; H, 2.13; N, 17.75; Found: C, 48.52; H, 2.45; N, 18.02 %.

5-(4-Nitrobenzylidene)-3-(8-chloro-1,2,4triazino[5,6-b]indol-3-ylamino)-2-thioxothiazolidin-4one (**5.10**). Yield 82 %, mp 613–616 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 12.53 (br.s, 1H, NH, indole), 12.24 (br.s, 1H, NH), 8.33 (d, 2H, J = 5.0 Hz, arom), 8.29 (br.s, 1H, =CH), 7.93-7.96 (m, 2H, arom), 7.69 (d, 1H, J = 8.3 Hz, arom), 7.49 (d, 1H, J = 8.7 Hz, arom). Calc. for C₁₉H₁₀ClN₇O₃S₂: C, 47.16; H, 2.08; N, 20.26; Found: C, 46.96; H, 1.82; N, 20.01 %.

3-[3-(1,2,4-Triazino[5,6-b]indol-3-ylamino)-4oxo-2-thioxothiazolidin-5-ylidene]-1,3-dihydroindol-2one (6.1). Yield 73 %, mp > 633 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 13.42 (br.s, 1H, NH, isatin), 12.61 (br.s, 1H, NH, indole), 11.23 (br.s, 1H, NH), 8.27 (d, 1H, J = 7.8 Hz, arom), 7.55-7.64 (m, 3H, arom), 7.32-7.43 (m, 2H, arom), 7.13 (t, 1H, J = 7.6 Hz, arom), 6.97 (d, 1H, J = 7.7 Hz, arom). Calc. for C₂₀H₁₁N₇O₂S₂: C, 53.92; H, 2.49; N, 22.01; Found: C, 54.21; H, 2.71; N, 22.28 %.

3-[3-(1,2,4-Triazino[5,6-b]indol-3-ylamino)-4oxo-2-thioxothiazolidin-5-ylidene]-5-bromo-1,3dihydroindol-2-one (**6.2**). Yield 78 %, mp > 633 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 13.35 (br.s, 1H, NH, isatin), 12.61 (br.s, 1H, NH, indole), 11.36 (br.s, 1H, NH), 8.26 (d, 1H, J = 7.5 Hz, arom), 7.55-7.68 (m, 3H, arom), 7.48 (d, 1H, J = 8.4 Hz, arom), 7.39 (t, 1H, J = 8.1 Hz, arom), 6.92 (d, 1H, J = 8.4 Hz, arom). Calc. for C₂₀H₁₀BrN₇O₂S₂: C, 45.81; H, 1.92; N, 18.70; Found: C, 46.03; H, 2.12; N, 18.96 %.

3-[3-(1,2,4-Triazino[5,6-b]indol-3-ylamino)-4oxo-2-thioxothiazolidin-5-ylidene]-5-chloro-1,3dihydroindol-2-one (**6.3**). Yield 82 %, mp > 633 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): *d* 13.37 (br.s, 1H, NH, isatin), 12.58 (br.s, 1H, NH, indole), 11.33 (br.s, 1H, NH), 8.27 (d, 1H, J = 7.5 Hz, arom), 7.55-7.67 (m, 3H, arom), 7.50 (br.s, 1H, arom), 7.34-7.43 (m, 2H, arom), 6.97 (d, 1H, J = 8.1 Hz, arom). Calc. for C₂₀H₁₀ClN₇O₂S₂: C, 50.05; H, 2.10; N, 20.43; Found: C, 50.36; H, 2.43; N, 20.76 %.

3-[3-(1,2,4-Triazino[5,6-b]indol-3-ylamino)-4oxo-2-thioxothiazolidin-5-ylidene]-5-chloro-1,3dihydroindol-2-one (6.4). Yield 75 %, mp > 623 K. ¹H NMR (300 MHz, DMSO- d_6 +CCl₄): δ 13.40 (br.s, 1H, NH, isatin), 12.59 (br.s, 1H, NH, indole), 11.14 (br.s, 1H, NH), 8.27 (d, 1H, *J* = 7.6 Hz, arom), 7.64 (t, 1H, *J* = 7.6 Hz, arom), 7.57 (d, 1H, *J* = 7.6 Hz, arom), 7.39-7.44 (m, 2H, arom), 7.14 (d, 1H, *J* = 7.6 Hz, arom), 6.85 (d, 1H, *J* = 7.9 Hz, arom), 2.34 (s, 3H, CH₃). Calc. for C₂₁H₁₃N₇O₂S₂: C, 54.89; H, 2.85; N, 21.34; Found: C, 55.12; H, 3.02; N, 21.56 %.

2.3. Primary Anticancer Assay

Primary anticancer assay was performed at approximately sixty human tumor cell lines panel derived from nine neoplastic diseases, in accordance with the protocol of the Drug Evaluation Branch, National Cancer Institute, Bethesda [20-22]. The tested compounds were added to the culture at a single concentration (10^{-5} M) and the cultures were incubated for 48 h. End point determinations were made with a protein binding dye, sulforhodamine B (SRB). Results for each tested compound were reported as the percent of growth of the treated cells when compared to the untreated control cells. The percentage growth was evaluated spectrophotometrically versus controls not treated with test agents.

3. Results and Discussion

3.1. Chemistry

The general methods for synthesis of target S-substituted triazino[5,6-b]indoles and thiazolidinone-triazinoindole conjugates are depicted in Scheme 1 and 2.

Synthesis of 3-mercapto-1,2,4-triazino[5,6b]indoles **1.1-1.3** was performed *via* the reaction of 5-*R*- isatins and thiosemicarbazide at the presence of K_2CO_3 in water medium [3-5]. Compounds **1.1-1.3** were utilized in *S*-alkylation reaction with ethyl chloroacetate or several *N*-arylchloroacetamides, thus the corresponding 1,2,4-triazino[5,6-b]indole derivatives **2.1-2.14** have been obtained (Scheme 1).

3-Mercapto-1,2,4-triazino[5,6-b]indoles were utilized in reaction with hydrazine producing

corresponding **3.1-3.2** as precursors for synthesis of new 4-thiazolidinones with 1,2,4-triazino[5,6-b]indole moiety in 3 position (**4.1-4.2**). Synthesized methylene active derivatives **4.1-4.2** readily reacted with aromatic aldehydes and isatins to produce 5-ylidenederivatives **5.1-5.5** and **6.1-6.4** via Knoevenagel condensation procedure (medium – acetic acid, catalyst – fused sodium acetate).

385

Scheme 2

The characterization data of synthesized *S*-substituted 1,2,4-triazino[5,6-b]indoles and novel heterocyclic substituted thiazolidones are presented in experimental part. Analytical and spectral data (¹H NMR) confirmed the structure of the synthesized compounds.

The protons of the methylene group (CH₂CO) in the ¹H NMR spectra of synthesized compounds **2.1-2.14** appear as singlet at $\delta \sim 4,30$ ppm, NH proton of indole cycle shows the broad singlet at $\delta \sim 12,43-12,84$ ppm. The chemical shift for the methylidene group of 5-arylidenederivatives **5.1-5.10** is insignificantly displaced in a weak magnetic field, $\delta \sim 8.22$ ppm and clearly indicated that only Z-isomers were obtained in Knoevenagel reaction of indolotriazine substituted thiazolidinones with aromatic aldehydes [19].

3.2. Evaluation of Anticancer Activity *in vitro*

Some new indolotriazine derivatives (2.2, 2.4-2.9) were submitted and evaluated at single concentration of

10⁻⁵ M towards panel of approximately sixty cancer cell lines. The human tumor cell lines were derived from nine different cancer types: leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate, and breast cancers [20-22]. The compounds were added at a single concentration and the cell culture was incubated for 48 h. End point determinations were made with a protein binding dye, sulforhodamine B (SRB). The results for each compound are reported as the percent growth (GP, %) of treated cells when compared to untreated control cells (Table 1). The range of growth % shows the lowest and the highest growth % found among different cancer cell lines.

The tested compounds displayed low antitumor activity with average values GP from 86.14 (2.7) to 98.97 (2.5), excepted 2.8 (GP = 55.41 %), which demonstrated cytostatic effect (GP \leq 50 %) on 23 cell lines (Table 1).

Finally, compound **2.8** was selected in advanced assay against a panel of approximately sixty tumor cell

Table 1

	(0 collings account 1 does 10 ² M come								
Comp		for 5 days (0 call							
	Mean growth, %	Range of growth, %	The most sensitive cell lines	Growth of the most	lor 5-dose 60 cell				
	00.00			sensitive cell lines, %	innes assay)				
2.2	88.89	55.46 to 112.91	UO-31 (renal cancer)	55.46	Inactive				
2.4	93.30	63.05 to 117.24	T-47D (breast cancer)	63.05	Inactive				
2.5	98.97	69.89 to 133.44	UO-31 (renal cancer)	69.89	Inactive				
2.6	90.87	37.67 to 114.65	MDA-MB-468 (breast cancer)	37.67	Inactive				
2.7	86.14	47.61 to 108.61	T-47D (breast cancer)	47.61	Inactive				
	55.41	3.74 to 103.13	SR (leukemia)	34.94					
			A549/ATCC (lung cancer)	37.57					
			HOP-62 (lung cancer)	9.23					
			NCI-H226 (lung cancer)	39.69					
			NCI-H23 (lung cancer)	49.13					
			HCT-116 (colon cancer)	39.09					
			SF-295 (CNS cancer)	43.27					
			SNB-75 (CNS cancer)	33.01					
			U251 (CNS cancer)	36.06					
			LOX IMVI (melanoma)	3.74					
			OVCAR-3 (ovarian cancer)	45.51	Active				
1.0*			OVCAR-4 (ovarian cancer)	26.86					
2.8*			OVCAR-8 (ovarian cancer)	34.73					
			SK-OV-3 (ovarian cancer)	39.22					
			786-0 (renal cancer)	31.77					
			ACHN (renal cancer)	35.81					
			CAKI-1 (renal cancer)	38.93					
			RXF 393 (renal cancer)	30.44					
			TK-10 (renal cancer)	42.63					
			UO-31 (renal cancer)	33.68					
			PC-3 (prostate cancer)	30.48					
			MDA-MB-231/ATCC	47.07					
			(breast cancer)						
			T-47D (breast cancer)	34.10					
2.9	88.98	57.09 to 116.11	HCT-116 (colon cancer)	57.09	Inactive				

Anticancer screening data in concentration 10⁻⁵M

Note: * the most sensitive cell lines with GP value ≤ 50 % are presented

Table 2

Disease	Cell line	pGI_{50}	pTGI ^a
MG MID		5 24	4 65
Leukemia	CCRE-CEM	4.83	NA
Leukemia	HL-60 (TB)	4 58	NA
Leukemia	K-562	4.30	4 39
Leukemia	MOI T-4	4.03	4.35
Leukemia	RPML-8226	5.07	4.10
Leukemia	SR	5.07	4.11
NSC lung cancer	45/9/ATCC	5.10	4.47
NSC lung cancer	HOP-62	5.63	5.26
NSC lung cancer	HOP-02	5.05	5.19
NSC lung cancer	NCL-H226	5.75	4.54
NSC lung cancer	NCI-H322	5.07	νΔ
NSC lung cancer	NCI-H460	5.07	4.63
NSC lung cancer	NCL-H522	5.10	4 35
Colon cancer	COLO 205	5.17	4.55
Colon cancer	HCC-2998	1.94	4.50 NA
Colon cancer	НСС-2778	5.46	4 50
Colon cancer	HCT-15	5.40	4.30
Colon cancer	НТ20	1.01	4.57
Colon cancer	KM12	5.01	4.57 NA
Colon cancer	SW 620	4.94	4.00
Colon cancer	SW-020	5 33	4.09
CNS cancer	SF 205	5.55	4.77
CNS cancer	SF 530	5 30	4.82
CNS cancer	SNB 10	5.16	4.71
CNS cancer	SNB 75	5.10	5.28
CNS cancer	LI251	5.50	5.12
Malanoma		5.30	5.15
Melanoma	MALME 2M	5.71	3.30
Melanoma	M14	1.45	4.95
Melanoma	MDA MP 425	4.90	4.51
Melanoma	SK MEL 2	5 32	4.34
Malanoma	SK-WEL-2	5.32	4.80
Melanoma	SK MEL 5	5.35	4.79
Melanoma	UACC 257	5.11	4.01
Melanoma		4.07	4.49
Ovarian cancer	IGROV1	5.11	4.57
Ovarian cancer	OVCAR-3	5.10	4.68
Ovarian cancer	OVCAR-4	5.69	5.28
Ovarian cancer	OVCAR-8	5.07	1.20
Ovarian cancer	NCI/ADR_RES	1.43	4.02
Ovarian cancer	SK-OV-3	5 51	5.04
Renal cancer cer	786-0	5.31	4 84
Renal cancer	A498	5 73	5.08
Renal cancer	ACHN	5.48	4 88
Renal cancer	CAKL1	5.17	4.60
Renal cancer	RXF 393	5.17	4.87
Renal cancer	SN12C	5.18	4 69
Renal cancer	UO-31	5.63	5.16
Prostate cancer	PC-3	5.35	4.74
Prostate cancer	DI-145	5.27	4.74
Breast cancer	MCF7	4 99	4.57
Breast cancer	MDA-MB-231/ATCC	5.59	4.94
Breast cancer	MDA-MB-468	4.97	4.49
Breast cancer	HS 578T	5.52	4.81
Breast cancer	T-47D	5.37	4.75

Note: ^a NA (not active) – value of pTGI is less than 4.00

Log₁₀ of Sample Concentration (Molar)

lines at 10-fold dilutions of five concentrations (μ M): 100, 10, 1, 0.1 and 0.01 [20-22]. Based on the cytotoxicity assays, the antitumor activity dose-response parameters were calculated for experimental agents against each cell line: GI₅₀ – molar concentration of the compound that inhibits 50 % net cell growth; TGI – molar concentration of the compound leading to total inhibition (both are presented in Table 2); and LC₅₀ – molar concentration of the compound leading to 50 % net cell death.

The tested compound **2.8** showed significant inhibition activity against 43 (pGI₅₀ > 5) from 55 human tumor cells with average pGI₅₀/ pTGI values 5.24 / 4.65 (Table 2). Compound **2.8** demonstrates the highest influence (pGI₅₀ \geq 5.50) on individual cell lines: HOP-62 and HOP-92 (NSC lung cancer), SNB-75 and U251 (CNS cancer), LOX IMVI (Melanoma), OVCAR-4 and SK-OV-3 (Ovarian cancer), A498 and UO-31 (Renal cancer), as well as MDA-MB-231/ATCC and HS 578T (Breast cancer).

The influence of compound **2.8** on individual tumor cell lines at 10-fold dilutions of five concen-

trations (μ M): 100, 10, 1, 0.1 and 0.01) is depicted in Fig. 2.

Table 3

Anticancer selectivity pattern of the most active compound 2.8 at the GI_{50} (μ M) and TGI (μ M) levels

Disease	GI ₅₀	SI ^a	TGI	SI^{b}
Leukemia	13.80	0.4	64.56	0.4
NSC lung cancer	4.37	1.4	19.95	1.3
Colon cancer	8.71	0.7	48.98	0.5
CNS Cancer	3.89	1.6	13.18	1.9
Melanoma	5.62	1.1	18.20	1.4
Ovarian Cancer	5.01	1.2	14.79	1.7
Renal Cancer	3.63	1.7	13.18	1.9
Prostate Cancer	4.89	1.3	18.20	1.4
Breast Cancer	5.13	1.2	19.50	1.3

Notes: $^{\rm a}$ selectivity index at the ${\rm GI}_{50}$ level; $^{\rm b}$ selectivity index at the TGI level.

The selectivity index (SI) obtained by dividing the full panel MG-MID (μ M) of the compound **2.8** by its individual subpanel MG-MID (μ M) was considered as a measure of compound's selectivity. Ratios between 3 and 6 refer to moderate selectivity, ratios greater than 6 indicate high selectivity toward the corresponding cell line, while compounds not meeting either of these criteria are rated non-selective [23]. In this context, the active compound **2.8** do not have selectivity toward any subpanel at both the GI₅₀ and TGI levels (selectivity indexes are less than 2.0) (Table 3).

4. Conclusions

In the present paper *S*-substituted 1,2,4-triazino[5,6-b]indoles and 4-thiazolidinone based conjugates with triazinoindole moiety are described. Antitumor activity assay of seven synthesized compounds allowed us to identify a highly active compound **2.8** which demonstrated significant inhibition activity against 43 ($pGI_{50} > 5$) out of 55 human tumor cells with average $pGI_{50} / pTGI$ values 5.24 / 4.65.

Acknowledgements

We are grateful to Dr. V.L. Narayanan from Drug Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD, USA, for *in vitro* evaluation of anticancer activity.

References

- [1] Pandeya S., Smitha S., Jyoti M. et al.: Acta Pharm., 2005, 55, 27.
- [2] Kinsman O., Livermore D. and Smith C.: Antimicrobial Agents and Chemotherapy, 1993, **37**, 1243.
- [3] Gladych J., Hornby R., Hunt J. *et al.*: J. Med. Chem., 1972, **15**, 277.
- [4] DiCiollo C., Zarembo J. and Pagano J.: Xenobiotica, 1973, **3**, 171.
- [5] Mongel A., Palop J., Ramirez C. *et al.*: Eur. J. Med. Chem., 1991, **26**, 179.
- [6] Zhang Q., Ding D., Zeng S. et al.: Plos One, 2012, 7, e46294.

[7] Zhang Q., Zeng S. Zhang Yu et al.: EMBO Molecular Medicine, 2012, 4, 298.

[8] Lesyk R. and Zimenkovsky B.: Curr. Org. Chem., 2004, 8, 1547.

[9] Havrylyuk D., Zimenkovsky B. and Lesyk R.: Phosphorus, Sulfur Silicon Relat. Elem., 2009, **184**, 638.

[10] Kaminskyy D., Khyluk D., Vasylenko O. and Lesyk R.: Tetrahedron Lett., 2012, **53**, 557.

- [11] Kaminskyy D., Khyluk D., Vasylenko O. *et.al.*: Sci. Pharm., 2011, **79**, 763.
- [12] Lesyk R., Zimenkovsky B., Kaminskyy D. et.al.:
- Biopolymers and Cell, 2011, 27, 107.
- [13] Havrylyuk D., Mosula L., Zimenkovsky B. *et. al.*: Eur. J. Med. Chem., 2010, **45**, 5012.
- [14] Mosula L., Zimenkovsky B., Havrylyuk D. et. al.: Farmacia, 2009. 57, 321.
- [15] Havrylyuk D., Zimenkovsky B., Vasylenko O. *et. al.*: Eur. J. Med. Chem., 2009, **44**, 1396.
- [16] Panchuk R., Chumak V., Fil' M. *et. al.*: Biopolymers and Cell, 2012, **28**, 121.
- [17] Havrylyuk D., Zimenkovsky B., Vasylenko O. *et. al.*: J. Med. Chem., 2012, **55**, 8630.
- [18] Havrylyuk D., Kovach N., Zimenkovsky B. *et. al.*: Arch.
- Pharm. Chem. Life Sci., 2011, **344**, 514.
- [19] Popov-Pergal K., Cekovic Z. and Pergal M.: Zh. Obsh. Khim., 1991, **61**, 1958.
- [20] Monks A., Scudiero D., Skehan P. et. al.: J. Nat. Cancer Inst., 1991, 83, 757.
- [21] Boyd M. and Paull K., Drug Dev. Res., 1995, 34, 91.
- [22] Shoemaker R.: Nature Rev./Cancer, 2006, 6, 813.
- [23] Rostom S.: Bioorg. Med. Chem., 2006; 14, 6475.

СИНТЕЗ 35-ЗАМІЩЕНИХ ТРІАЗИНО[5,6-В]ІНДОЛІВ ТА 4-ТІАЗОЛІДИНОН-ТРІАЗИНО[5,6-Ь]ІНДОЛЬНИХ ГІБРИДНИХ МОЛЕКУЛ З ПРОТИПУХЛИННОЮ АКТИВНІСТЮ

Анотація. Здійснено синтез та скринінг протипухлинної активності 1,2,4-тріазино[5,6-b]індолів. При взаємодії 3-меркапто-1,2,4-тріазино[5,6-b]індолів та N-арилхлороацетамідів одержано 3S-заміщені 1,2,4-тріазино[5,6-b]індоли. На основі 3-гідразино-1,2,4-тріазино[5,6-b]індолів отримано групу нових похідних 4-тіазолідинону. Вивчення протипухлинної активності семи синтезованих сполук здійснено на 60 лініях ракових клітин згідно протоколу NCI.

Ключові слова: синтез, тріазиноіндоли, 4-тіазолідинони, протипухлинна активність.