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Abstract. Low density polyethylene (LDPE) has been 
studied by dynamic mechanical analysis (DMA) under 
monoaxial compression. Particular attention was paid to 
the loss tangent and to dissipation of mechanical energy 
by internal friction. In this connection it is necessary to 
take into account the temperature-time conditions of the 
experiment or introduce appropriate amendments to the 
results obtained. 
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1. Introduction 

Any measurement of characteristics of a physical 
system is made by means of some instruments. In the 
classical theory of measurements representation according 
to which the measurements do not change the state of the 
measured system is used. During the measurements the 
influence of the measuring system is insignificant and the 
situation is not changing. However, according to the 
quantum nature of all physical systems, measuring of the 
system characteristics changes its status. The greater the 
change, the more information it gives. In the theory of 
measuring increase of information corresponds to 
decrease in entropy [1]:  

ln
n

i i
i

S p p= −∑  

where pi – aprioristic probabilities of various conditions of 
a system, n – quantity of conditions. 

Thus, increased measurement accuracy necessarily 
increases the influence of measuring on the characteristics 
of the system. 

John Neumann established and mathematically 
formulated the “reduction postulate” for a quantum 
system. According to this postulate at measurement of 

some observable size the system condition changes in 
such a manner that in a new condition the measured 
observable has already another certain value, and it has 
turned out as a result of measurement. Occurrence of this 
condition is called a condition reduction of a system.  

In the theory of measurements two types of 
measuring systems are considered: passive and active [2]. 
In a passive measuring system there is a comparison of the 
defined size with the standard without any active 
influence on the system. The feature of active measuring 
system is influence on the characterized system, and the 
response of the system to this influence gives the 
information for calculation of the needed parameters. 

As the active measuring system assumes a certain 
influence on characterized object in the course of this 
influence the object can undergo changes. That is why the 
operation of agreement between the measurement system 
and measured object is carried out for obtaining a more 
accurate value of estimated parameters and for decreasing 
the influence of the input action on the measured object. 

For measurements related to complex systems or 
facilities, the measured quantity depends upon different 
conditions. Usually the nature and quantitative 
characteristics of these dependences are unknown. The 
ccircumstances affecting the measurement result do not 
remain constant during the measurements and, as a result, 
it is impossible to correct the measurement error. This 
means that the measurements are not unique, but also 
reflect the influences on these measurements. These 
principles are important for the values that use complex 
physical and mathematical models in the measurement 
and which require adjustments in accordance with 
conditions. 

In the mechanic of polymers such values are the 
parameters that characterize the relaxation properties of 
the material. These values and their corresponding 
dependence allow to judge about the structure of polymers 
and to determine the structural transition temperature and 
operating temperature of materials [3, 4]. 
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One of widely used methods in research of elastic 
and relaxation properties of polymers in the block at 
periodic sinusoidal loadings is the method of 
Aleksandrov-Lazurkin [6] or dynamic mechanical 
analysis (DMA). This method is used for the elastic-
plastic deformation of polymers in the frequency range 
located much lower than the natural frequency of the 
sample, i.e. outside the resonance region. In this case, the 
phase relationships, such as the lag phase of strain from 
the strain, are defined only by the relaxation time (the 
spectrum of relaxation times) and the elasticity of the 
material. Investigations of the phase relationships do not 
depend on the shape, size and density of the sample. This 
allows to comparatively easy determine the relaxation 
time of the material. 

The method is based on the conception of elastic-
plastic deformation as a reflection of the deformation of 
tightly packed flexible molecules. The appearance of the 
elastic force during deformation and shape recovery after 
unloading is the result of thermal motion units of 
macromolecules. All relationships underlying the method 
refer to the equilibrium state of the sample under load. 
Studying the dependence of elastic-plastic deformation 
upon the time under the conditions of constant stress or 
deformation and under the conditions of periodic 
deformations confirmed the important role of relaxation 
phenomena for the behavior of polymeric materials under 
mechanical stress, and in the process of verification of 
polymers [5, 7]. 

Depending on the regime of impact the properties 
of the polymer change. Thus, at a constant temperature of 
the experiment with increasing speed or increasing the 
frequency of exposure the polymers “solidification” effect 
has been achieved [8]. 

Total deformation of the polymer consists of 
elastic, rubbery and viscous fluid components. 
Considering the polymer in the elastic-plastic state, it is 
assumed that the macroscopic viscosity of the material is 
high and flow of the material is absent. To obtain the 
dependence of rubbery and elastic component of 
deformation on the applied mechanical stress the simplest 
model for these conditions is used [9]. In this paper a 
three-element Kelvin model (parallel connected spring 
and damper) connected in series with a spring is used. The 
equation describing the relationship between stress and 
strain of this model is as follows: 

0 1 0 1
0

E E E Ed dE
dt dt
σ ε

σ ε
η η
+

+ = +    (1) 

where σ – stress acting on the system being studied; ε – 
deformation occurring in the system under the applied 
stress, Е0 – the module of elasticity; Е1 – high elasticity 
module; η – microviscosity. 

Deformation of the polymer consists of elastic  
(ε0 = σ/Е0 ) and rubbery (ε1) parts. Expressing the rate of 
change in strain and allocating highly elastic component ε1 
in the Eq. (1), we obtain: 

1 1
1

d E
dt
ε σ

ε
η η

+ =    (2) 

If the stress varies with time harmonically with 
frequency ω according to the equation:  

0 cos( )tσ σ ω=    (3) 
Then the total deformation is described by the 

equation: 
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where the parameter τ = η / Е1 is called the relaxation 
time. 

In some papers [10, 11] this parameter is called the 
delay time and the relaxation time is presented as a 
parameter described by the equation: 

1
1

1 0

Е
Е Е

τ τ=
+

                  (5) 

The first member of the Eq. (4) contains a constant 
C. This constant depends on initial conditions, 
characterizes transient and decays with time part of the 
deformation. 

After sufficiently long time since the beginning of 
the measurements the transitional process is over and a 
stationary regime is established. In this case, C = 0 and in 
the Eq. (4) only the expression in figured brackets should 
be considered. This part of the Eq. (4) describes the 
steady-stationary oscillations, which are studied in the 
experiment. They consist of oscillations, which are in 
phase with the mechanical stress, representing the elastic 
component, and the oscillations are lagging behind the 
stress in phase π/2 and determined by the rubbery 
component. Since the two harmonic oscillations are 
directed along one axis and the vectors of their velocities 
are collinear, the amplitude of deformation is described by 
the equation: 

( )

2 2 2

0 0 2 2 2 22 2
0 1 1

1 1 1 1
1 1Е Е Е

ω τ
ε σ

ω τ ω τ

 
= + + +  +

 (6) 

Using the condition Е0 >> Е1 as highly elastic 
modulus E1 for polymeric materials is several orders 
smaller than the elastic modulus E0, the dependence of 
deformation on the mechanical stress and frequency of its 
application (ω) is as follows: 

0
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   (7) 



The Analysis of Changes of Relaxation Parameters of Polyethylene During their Measurement 

 

97 

The obtained expression can be transformed into 
the following form: 

0

2 2
0 1

1

1Е

ε
σ ω τ

=
+

    (8) 

Parameter ε0/σ0 is the dynamic compliance (I) and 
equal to the inverse dynamic modulus (E). Dynamic 
compliance is the meaning of the deformation in a single 
mechanical stress. 

Using a complex representation of harmonically 
varying deformation ε(t) = ε0еiωt, the rate of deformation 
can be expressed as dε(t)/dt = ωε0ei (ωt + π/2). Substituting 
this expression in the differential Eq. (1) and dividing by 

0
i te ωε , gives the relation: 

( ) ( )i E E i iEηω ω ηω∗+ =       (9) 
where E* is a complex dynamic modulus, which can be 
represented as: 

2 2 2

2 2 2 2 2 2( ) E EE i i
E E

η ω ηω
ω

η ω η ω
∗ = +

+ +
  (10) 

The first member of the Eq. (10) is a real, and the 
second is the imaginary part of the complex dynamic 
modulus (E*= E`+ iE``), which is proportional to E and 
depends on the frequency. E``(ω) determines the losses at 
harmonic deformation and is the module of losses. 

Analogous to the complex dynamic modulus 
E*(iω) we can represent a complex dynamic compliance 
I* (I* = 1/E*) as the sum of the imaginary I`` and real 
I`parts. Taking into account that I*(iω)⋅E*(iω) = 1 , we 
can provide the corresponding expression in the form:  

I*(iω) = I`(ω) + iI``(ω) 

where 1
02 2 2 2

0 1

1 1 1
1 1

I
I I
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              (11) 

and   I0 = 1/E0, I1 = 1/E1. 
Absolute measured deformation has the form: 

2 2I I I′ ′′= +  
From condition I1>> I0 (as Е0 >> Е1):  

1

2 21

I
I

ω τ
≈

+
                              (12) 

The phase angle δ between I and I``, i.e. between 
strain and stress is defined as: 

1
2 2

1 0 (1 )
IItg

I I I
ωτ

δ
ω τ

′′
= =

′ + +
             (13) 

Angle δ characterizes the mechanical loss, i.e. the 
part of mechanical energy which came into heat or a part 
of the energy dissipated per cycle of the deformation per 
unit of volume. A measure of this transformation may be 
an area corresponding to the hysteresis loop formed by the 
deformation dependence of mechanical stress during the 
cycle of periodic actions. This loop is formed by the 
curves of loading and unloading.  

At low frequencies, when it is possible to 
investigate the hysteresis loop and measure the 
mechanical losses, using the coefficient of mechanical 
losses [3]:  

χ = ΔW/W 
where W – the total work of mechanical forces in a single 
cycle ща deformation, and ΔW–- dissipated energy per 
cycle of deformation, which is proportional to the square 
hysteresis loop. 

2. Experimental 

In this paper the low-density polyethylene (LDPE) 
was selected as an object of study. Samples in the form of 
a cylinder with dimensions: diameter d of 8 mm with a 
ratio h/d = 1.5 were made by pressing at the temperature 
of 453 K and the pressure of 1500 N/cm2. To obtain a 
homogeneous sample the polyethylene was kept under 
pressure and temperature of 453 K, using repressing to 
remove air located between the grains of the original 
polymer.  

The samples were subjected to a periodic monaxial 
compression at room temperature for installation on the 
relaxometer [12, 13]. As a result of periodic influence of 
mechanical stress on the sample the stress-strain during 
loading and unloading in the form of a hysteresis loop was 
received. The study used three discrete frequencies of 
loading: 0.017, 0.17 and 1.7 Hz. In each series of tests not 
less than three samples were used. Every sample was 
subjected to periodic mechanical stress for 30 min, the 
results were taken every 5 min. 

Measurements were taken every five minutes for 30 
min. Parameter of the mechanical loss is defined as the 
ratio of the hysteresis loop to the area between the curve 
and the loading axis of strain: χ = ΔW/W = Sl/Shole. The 
measurement results were averaged and subjected to 
further processing in accordance with calculations given 
in the Introduction. 

3. Results and Discussion 

Fig. 1 shows kinetic curves of variation of the 
mechanical loss by prolonged exposure of three 
frequencies: 0.017, 0.17 and 1.7 Hz. With increasing time 
of deformation coefficient of mechanical losses of the 
samples varies, but for the different load frequencies these 
changes have different character. 

For low frequencies 0.017 Hz (curve 1) and 0.17Hz 
(curve 2) the initial value of this parameter is higher than 
the next. Evidently, this is due to the fact that during the 
decreasing “χ” the system goes into the steady state, i.e. 
where the constant C in Eq. (4) becomes equal to 0. For 
the frequency of 1.7 Hz (curve 3) the establishment of 
such state is much faster.  
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Fig.  1. Variation of the coefficient of the mechanical losses (χ) during periodic load. 
Frequency of load, Hz: 0.017  (1); 0.17 (2) and 1.7 (3) 

 

Between χ and tgδ there is dependence at all 
frequencies in terms of linear viscoelasticity. Thus, for 
asymmetric oscillations from 0 to 2ε0 according to work 
[14)] such dependence is found:  

2

2

4 1

tg
tg tg
π δ

χ
δ π δ

=
+ +

                       (14) 

The solution of this equation concerning parameter 
tg δ gives the dependence: 

2 2

4

4 (1 ) 6
tg χ

δ
π χ χ

=
− −

         (15) 

This expression can be represented as: tgδ = ψ 
In expression (13) provided Е0 >> Е and I1 >> I0 at 

low frequencies to a first approximation we can obtain: 
tgδ = ωτ        (16) 

Equating the last two expressions leads to the 
relation: ψ = ωτ, where τ = ψ / ω. 

According to the second postulate of the Boltzmann 
adopted in his theory of the elastic aftereffect, and the 
underlying Boltzmann-Volterra model that describes the 
relaxation phenomena [15]: effect on the stress at any 
given time of several deformations, that occurred in the 
past, does not depend on each other and therefore are 
added algebraically.This position was also the name of the 
Boltzmann superposition principle. It should be noted that 
for polymers the superposition principle holds in the 
upper-bounded range of deformation, stress and rate of 
their change.  

According to this principle, considering the 
dissipative processes occurring during long-term effects of 
periodic stress on the material in the elastic-plastic state, 
we can conclude that there is an accumulation of 
mechanical energy dissipation in each cycle. Then, if the 
part of energy, transformed into thermal energy during 
one cycle, is determined by parameter χ1, then under the 
condition of low thermal conductivity with the 
environment during N cycles, the part of dissipated energy 
during the time t is equal to: 

χcom = χ1⋅t⋅ν,  where t⋅ν = N 

Stored energy in the sample is converted into heat, 
which should lead to an increase in temperature. The 
principle of temperature-time superposition [16] 
establishes equivalence between the effect of temperature 
and duration of mechanical influence on the relaxation 
properties of polymers. Based on this principle, we can 
assume that the increase of impact load on the material is 
proportional to the action of temperature. Empirical 
dependence of temperature change ΔT on exposure time 
and frequency of deformation ν in the first approximation 
can be expressed as follows: T = bT ν, where “b” is a 
parameter characterizing features of converting 
mechanical energy into heat for the material under study. 

Relaxation time of the supplied periodic stress 
decreases with increasing temperature and obeys the 
Arrhenius equation : 

 τ = τ0еU/RT                  (17) 
For elastic-plastic material similar dependence 

follows from Aleksandrov-Gurevich equation [17, 18] and 
has the form: 

 τ = τ0еxp[(U0- aσ)/RT]  (18) 
where U0 – activation energy of relaxation process, the 
constant of the material. 

This equation takes into account the dependence of 
the relaxation time on the load. If we assume that U0–aσ ≈ 
U and determine the relative relaxation time as τt/τ1 (the 
ratio of the current value of the relaxation time to its initial 
value) then on the basis of equation (18) we can 
represented this value as an expression:  

1 1 1

exp
( )

t U U
R T T RT

τ
τ

 
= − + ∆ 

 (19)  

where the temperature T1 corresponds to the beginning of 
load application, when the system is characterized by a 
relaxation time τ1, and the increment of the ΔT is the 
change of temperature in the impact of load. 

After simple algebraic manipulations (19) takes the 
form: 

2
11 1

1

1
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t

RT RT
T

U Uτ
τ

−= + ∆                              (20) 
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If instead of the increment of temperature ΔT we 
use time of impact of load (t) and frequency of the applied 
load (ν) then the expression (20) becomes: 

( )
1 2

11 1 1ln
t

RT RT
b t

U U
τ

ν
τ

−
− 

= + 
 

       (21) 

Using this expression it is possible using the 
experimental data to find the estimated values of 
activation energy of relaxation process and to determine 
the extent to which the process is stationary (steady state). 
These evaluations will determine the degree of linearity of 
the relaxation processes and the range of conditions and 
the regime of correct determination of relaxation 
parameters for a periodic load. 
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Fig. 2. The dependence of the relative relaxation time (τt/τ0) on 
the time exposure of load (t). Frequency of load is 0.017 Hz 

 
Fig. 2 shows the inverse logarithmic dependence of 

the relative relaxation time (which corresponds to the left 
side of the Eq. (21)) upon the inverse of the time exposure 
of load on the sample with a frequency of 0.017 Hz. The 
proposed coordinates of dependence of the relative 
relaxation time is directly proportional to the time of load 
effects. We can determine the activation energy of the 
current process by the value of this line intersection with 
the ordinate axis. Under these conditions (Fig. 2) it is 
equal to 4.9 kJ/mol. The slope in Fig. 2 allows to estimate 
the value of the parameter “b” in formula (21). The 
calculation shows that for the frequency of 0.017 Hz 
parameter “b” is 11.88. Since the dependence is linear in a 
rather wide time interval, this allows to conclude that the 
activation energy of relaxation process with periodic 
loading of LDPE under these conditions does not change.  

A similar calculation allows to determine the 
appropriate parameters for the frequency of 0.17 Hz (Fig. 
3). The calculated activation energy is 4.9 kJ/mol and  
b = 0.414. 

In Fig. 4 this dependence is presented for the 
frequency of 1.7 Hz. The calculated value of activation 
energy is 2.4 J / mol. The value of b = 0.04. 

With increasing frequency there is a reduction of 
the parameter b (Fig. 5). This indicates a difference in the 
relaxation processes at different frequencies. For 

frequencies of 1.7 and 0.17 Hz sampling rate ν on the 
parameter b is the same and equal to 0.07, while for the 
frequency of 0.017 Hz, this value is three times higher and 
amounts to 0.202. It should be noted the difference in the 
nature of the dependencies: Fig. 2 – for  ν = 0.017 Hz and 
Figs. 3 and 4 – for 0.17 and 1.7 Hz. 
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Fig.  3. The dependence of relative relaxation time (τt/τ0) on the 
time exposure of load (t). Frequency of load is 0.17 Hz 
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Fig. 4. The dependence of relative relaxation time (τt/τ0) on the 

time exposure of load (t). Frequency of load is 1.7 Hz 
 

-4

-3

-2

-1

0

1

2

3

-5 -4 -3 -2 -1 0

lnb

    
 

Fig. 5. The dependence of parameter “b” on the frequency of 
load (ν) 

The change of the angle of dependence of the 
relative relaxation time on the duration (Figs. 3 and 4) is 
most likely due to the establishment of dynamic 
equilibrium with the environment in the initial period of 
mechanical effects and change in the structure of the 
sample at times over 1000, which leads to a change in 
energy activation of the process. The activation energy of 
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changing the relative relaxation time is the smallest  
(2.4 kJ/mol) for the frequency of 1.7 Hz and for 
frequencies of 0.17 and 0.017 Hz, this energy is the same 
and equals to 4.9 kJ/mol. 

If in the equation of Aleksandrov-Gurevich (18) 
instead of the stress (σ) we use the frequency ν, instead of 
the coefficient “a” to use parameter “b”, we can define a 
certain characteristic value U0, similar to the initial 
activation energy of relaxation process: U0 = U + bν. 

Analysis of the dependence of the initial activation 
energy U0 on the frequency (Fig. 6) shows that with 
increasing frequency ν energy U0 decreases linearly. 
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Fig. 6. The dependence of initial energy  
of relaxation process on the frequency of load (ν) 

 
Using the principle of temperature-time superpo-

sition and kinetics coefficient of mechanical losses at 
different load intensities it is impossible to determine the 
time interval in which the measurements of relaxation 
parameters are correct. According to these approxima-
tions, we can preliminarily estimate the relaxation 
parameters and analyze the nature of relaxation processes 
by means of measurements without changing the initial 
temperature. 

4. Conclusions 

As a result of investigations we have shown that over 
time exposure periodic stress on the polymer sample a 
change in its relaxation time occurs. This process can be 
explained by a partial change in the structure of the polymer. 
For low frequency stress impacts (0.017 Hz) a change in the 
relaxation time of the sample occurs at a constant speed and 
activation energy for this process does not change.  

For frequencies of 0.17 and 1.7 Hz, the rate of 
change of the relaxation time is high at the initial time and 
decreases by several times after 5–7 min of exposure. The 
activation energy of changes of relaxation time, calculated 
in accordance with the principle of temperature-time 
superposition, linearly decreases with the increase of 
frequency of deformation. The coefficient “b”, which 
characterizes the structural changes in the polymer also 
decreases with increasing frequency. Thus, using the 
above approximation, we can give a preliminary 

assessment of the relaxation parameters and analyze the 
nature of relaxation processes of measurement without 
changing the initial temperature. 

Taking into account the principle of temperature-
time superposition and features of the kinetics changes in 
mechanical losses at different load intensities it is possible 
to determine the time interval in which the measurements 
of relaxation parameters will be correct.  
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АНАЛІЗ ЗМІН РЕЛАКСАЦІЙНИХ ПАРАМЕТРІВ 
ПОЛІЕТИЛЕНУ В ПРОЦЕСІ ЇХ ВИМІРЮВАННЯ 

Анотація. Встановлено, що при дослідженні таких 
релаксаційних характеристик як тангенс кута механічних 
втрат і дисипація механічної енергії як наслідок внутрішнього 
тертя в процесі періодичної дії одноосної напруги стискування 
на зразок полімеру в пружно-пластичному стані відбуваються 
зміни цих характеристик. Необхідно враховувати тем-
пературно-часові умови проведення експерименту або вводити 
відповідні поправки в отримані результати. На основі 
принципу температурно-часової суперпозиції запропоновані 
оціночні залежності зміни часу релаксації поліетилену від 
тривалості дії періодичного навантаження, які задовільно 
узгоджуються з експериментальними даними.  

 
Ключові слова: релаксаційний процес, дисипація 

механічної енергії, тангенс кута механічних втрат, принцип 
температурно-часової суперпозиції. 
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