A NEW GREEN CATALYST FOR SYNTHESIS OF BIS-MACROMONOMERS OF POLYETHYLENE GLYCOL (PEG)

Sara Haoue¹, Hodhaifa Derdar¹, 2, *, Mohammed Belbachir¹, Amine Harrane¹, 3

https://doi.org/10.23939/chcht14.04.468

Abstract. A new method to synthesise polyethylene glycol dimethacrylate (PEGDM) with various molecular weights (1000, 3000, 6000 and 8000 g/mol) of polyethylene glycol (PEG) has been developed. This technique consists in using Maghnite-H⁺ as eco-catalyst to replace ethylamine, which is toxic. Maghnite-H⁺ is a proton exchanged montmorillonite clay which is prepared through a simple exchange process. Synthesis experiments are performed in solution using dichloromethane as solvent in the presence of methacrylic anhydride. The effect of reaction time, temperature, amount of catalyst and amount of methacrylic anhydride is studied in order to find the optimal reaction conditions. The synthesis in solution leads to the best yield (98 %) at room temperature for the reaction time of 5 h. The structure of the obtained macromonomers (PEGDM) is confirmed by FTIR, ¹H NMR and ¹³C NMR, where the methacrylate end groups are clearly visible. Thermogravimetric analysis (TGA) is used to study the thermal stability of these obtained macromonomers. The presence of unsaturated end group was confirmed by UV-Visible analysis.

Keywords: PEGDM, one-pot synthesis, Maghnite-H⁺, macromonomers, methacrylic anhydride.

1. Introduction

Producing polymers based on renewable monomers has been the subject of several current research groups around the world. Among different types of polymers explored, polymers based on renewable resources have been studied most extensively [1]. Polyethylene glycol (PEG) is a non-toxic polymer with many applications in the industrial, medical and biological fields. The first study and characterization of PEG was conducted in 1860 by Laurenço [2]. PEG is the basis of various laxatives and also is used as excipient in pharmaceutical products and as a cancer drug delivery in targeted diagnostics [3]. When joined to different protein prescriptions, PEG also permits a slow clearance of the carried protein in the blood and is used in many commercial products [4].

Various polyethylene glycol (PEG) macromonomers have been reported in the scientific literature for many years. These PEG macromonomers were prepared from block copolymers between PEG and biodegradable polyesters [5] or by acrylation and methacrylation of PEG [6-9]. One of the main advantages of using PEG macromonomers is the preparation of biomaterials hydrogel. Over the past years, polyethylene glycol dimethacrylate (PEGDM) is synthesized by reacting PEG with methacryloyl chloride and triethylamine in the solution using dichloromethane as a solvent, at room temperature overnight [10] and for 24 h [11], with another methods extending reaction time to 4 days [12] before filtration and precipitation in diethyl ether. However, all these approaches are time-consuming and not environmentally friendly, as they involve the use of relatively large amounts of toxic reagents and solvents.

Generally, almost all the catalysts used for the preparation of polymers present great environmental problems, as they are corrosive. The main drawbacks of the application of zinc and silver compounds, as well as Lewis acids, are their difficulty to be handled and separated, which means they are often destroyed in this process. Moreover, zinc or silver compounds require environmental reconditioning [13].

To circumvent these limitations, in this paper we use a new method to synthesise PEGDMs with different molecular weight of PEG (1000, 3000, 6000, and 8000 g/mol) using an Algerian montmorillonite clay called Maghnite-H⁺ as a catalyst. In our previously published work we have shown the advantage of different applications of this catalyst type in several polymerization reactions [14]. It is preferred for its many advantages such as very low purchase price compared to other catalysts
and the easy of removal of the reaction mixture, regenerated by heating to the temperature above 373 K [15]. In this work, a very detailed study on the catalytic properties of Algerian clay (Mag-H\(^+\)) is developed. FTIR, \(^1\)H NMR, \(^{13}\)C NMR, TGA and UV-Vis analysis show that the (PEGDM) macromonomers were successfully obtained.

2. Experimental

PEG with different molecular weight (\(M_n = 1000, 3000, 6000,\) and \(8000\) g/mol), methacrylic anhydride (94%), diethyl ether (99.7%) and dichloromethane (99.8%) were purchased from Sigma Aldrich and used as received. The raw montmorillonite clay was obtained from ENOF Maghnia (Algerian manufacture specialized in the production of non-ferric products and useful substances).

2.2. Characterization

The X-ray powder diffraction profiles for pressed powder samples were recorded on a D8 Discover Bruker diffractometer using Cu-K\(\alpha\) radiation (\(\lambda = 1.5418\) Å). FTIR absorption spectra were recorded on an Alpha Bruker FTIR spectrometer. NMR is a very powerful analytical method for the elucidation of chemical structures. \(^1\)H NMR and \(^{13}\)C NMR spectra were recorded on a Brucker-Avance 400MHZ apparatus in a deuterated chloroform. Polymer thermal stability was assessed using thermogravimetric analysis (TGA) using PerkinElmer STA 6000 under nitrogen in the temperature range of 303–973 K with the heating rate of 20 K/min and the sample weight of about 6 mg. UV-Vis diffuse reflectance spectra were recorded using a SPECORD 210 Analytik Jena spectrometer. DSC measurements were carried out on Netzsch DSC 204 F1 Phonix 240-12-010-L, according to the following program: the specimens were heated at the rate of 10 K/min from 223 to 283 K.

2.3. Preparation of Maghnite–H\(^+\)

Maghnite–H\(^+\) is prepared according to the process reported in our previous study [16-20]. Maghnite–H\(^+\) is activated with a sulfuric acid solution to give a Maghnite exchanged with protons, called Mag-H\(^+\). In an Erlenmeyer flask, crushed raw Maghnite (20 g) is dispersed in a volume of distilled water (120 ml). The mixture is stirred for 2 h at room temperature. Then, a solution of sulfuric acid (0.25M) is added. The solution thus obtained is maintained for two days under stirring. The mineral is filtered off and washed several times with distilled water up to pH 7. After filtration, Mag-H\(^+\) is dried in an oven for 24 h at 378 K and then crushed. Its structure is established by FTIR and XRD.

2.4. Synthesis of PEGDM

Macromonomers

The synthesis of PEGDM (Scheme 1) was carried out in solution using dichloromethane as solvent. In a flask containing 2 g of PEG (1000 g/mol), we added 10 wt % of Mag-H\(^+\), which was previously dried for 30 min in the oven at 378 K. The mixture was stirred for 1 h at room temperature (298 K), and then we added 10 wt % of methacrylic anhydride under stirring for 4 h. Then, the same experimental protocol was performed varying the molecular weight of PEG (3000, 6000 and 8000 g/mol). The catalyst was removed from the mixture by simple filtration. The filtrate was precipitated in cold diethyl ether. The precipitated product was filtered and dried under vacuum over night, weighed and analyzed by \(^1\)H NMR, \(^{13}\)C NMR, FTIR and DSC.

\[
\begin{align*}
\text{PEG} + \text{Methacrylic Anhydride} & \rightarrow \text{PEGDM} \\
\text{RT, CH}_2\text{Cl}_2
\end{align*}
\]

Scheme 1. Synthesis of PEGDM macromonomers

3. Results and Discussion

3.1. Characterization of Maghnite-H\(^+\)

X-ray diffractograms of Raw-Mag and Mag-H\(^+\) are shown in Fig. 1. The calculated basal spacing (d(001)) from XRD patterns, applying Bragg equation (2d\(s\)in\(\theta\) = n\(\lambda\)) is 12.5 Å for Raw-Mag and 14.5 Å for Mag-H\(^+\). This increase in basal spacing is explained by the substitution of single water between the sheet of Raw-Mag by two interlamellar water layer in Mag-H\(^+\) [21].

FTIR spectrum of Maghnite-H\(^+\) (Fig. 2) is recorded in order to check the quality of the catalyst preparation. The hydrated structure of Maghnite-H\(^+\) results in characteristic vibrations of hydroxyl groups around 3400 and 3600 cm\(^{-1}\). Various Si–O vibrations mode at 1007,
756, 518, and 449 cm$^{-1}$ can be attributed to the montmorillonite clay structure. All these expected absorption bands confirm that the structure of the compound is thus in good agreement with vibration values obtained from the literature [22].

3.2. Characterization of PEGDM Macromonomers

3.2.1. NMR measurements (1H NMR and 13C NMR)

1H NMR spectra of macromonomers was recorded in CDCl$_3$. The 1H NMR spectrum allowed us to confirm the structure of the obtained product. The methacrylate end groups were clearly visible in the 1H NMR spectrum of macromonomer product, as shown in Fig. 3. The protons of =CH_2 end group assigned a signal at 5.8 and 6.1 ppm. The signal at 3.6 ppm is attributed to the PEG protons and the signal observed at 1.9 pm is attributed to the methyl protons (CH$_3$) of methacrylic anhydride.

The 13C NMR spectrum of macromonomers is shown in Fig. 4, the signal at 70.1 ppm is attributed to the PEG carbons, and ester function assigned a signal at 163 ppm. The CH$_3$ group of methacrylic anhydride is assigned as a signal at 17.7 ppm. The vinyl carbons of methacrylic anhydride are assigned as a signal at 128 and 135 ppm, which clearly shows that the synthesis of PEGDM macromonomers is successful with Mag-H$^+$.

3.2.2. FTIR measurements

FTIR spectra of PEG and PEGDM are shown in Fig. 5. The FTIR spectrum of PEGDM (B) shows intense band at 1715 cm$^{-1}$ corresponding to the valence vibration of the C=O of ester group. Methacrylate group is linked to

![Fig. 1. X-Ray diffractogram of Raw-Mag and Mag-H$^+$ (0.25M)](image)

![Fig. 2. FTIR spectrum of Raw-Mag and Mag-H$^+$](image)

![Fig. 3. 1H NMR spectrum of the obtained PEGDM macromonomers](image)

![Fig. 4. 13C NMR spectrum of the obtained PEGDM macromonomers](image)
A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG)

3.2.3. UV-Visible analysis (UV-Vis)

UV-Vis analysis allows assaying the unsaturated end group. The dichloromethane was taken as a solvent, and 0.1 g of each sample was diluted in 50 ml of dichloromethane and then its absorbance was measured. The double bond was observed at \(\lambda = 241.5 \, \text{nm} \) (Fig. 6). UV-Vis analysis confirms the results of FTIR and NMR analyses.

3.2.4. Thermogravimetric analysis (TGA)

Thermal stability of the obtained PEGDM macromonomer (6000 g/mol) and PEG (6000 g/mol) is shown in Fig. 7. The figure shows that the end capping with methacrylic anhydride is effective since degradation occurred at higher temperatures. This result confirms the previous \(^1\text{H} \) NMR results. In the temperature range of 523–593 K the weight loss was found to be 91.17 %, that can be reasonably attributed to the weight loss of the polymer and to the decomposition of PEGDM chains.

3.2.5. Differential scanning calorimetry (DSC)

The thermal properties of the obtained macromonomer PEGDM (6000 g/mol) are determined by DSC. Fig. 8 shows the results of the DSC measurements. The glass transition temperature \((T_g) \) of the PEGDM is observed in the temperature range of 243–233 K, the same result was obtained by Simon et al. [23].

3.3. Determination of Optimal Reaction Conditions

The objective of this part is to study the effect of various parameters including the quantity of the catalyst, quantity of methacrylic anhydride and the reaction time on the yield of the obtained macromonomers in order to find the optimum conditions for the reaction. The yield (%) was calculated by Eq. (1):
\[\text{Yield} = \frac{M_0}{M_1} \times 100 \]

(1)

where \(M_0 \) and \(M_1 \) are weights of the obtained macromonomer (PEGDM) and the initial polymer (PEG), respectively.

3.3.1. Effect of \(\text{Mag-H}^+ \) amount on the PEGDM yield

Fig. 9 shows the effect of the catalyst amount on the yield of the obtained macromonomers (PEGDM). The synthesis was carried out at 298 K for 5 h using various amounts of \(\text{Mag-H}^+ \) (2, 5, 7, 10, and 12 wt %). The reaction was carried out in solution with 10 wt % of methacrylic anhydride. One can see from the figure that the yield of macromonomers increased with the amount of \(\text{Mag-H}^+ \). The yield increases according to the quantity of \(\text{Mag-H}^+ \) up to the optimal point, which corresponds to 10 wt %. This behavior is explained by the increase of active sites available in \(\text{Mag-H}^+ \) responsible for the initiation and acceleration of the reaction until the saturation of these sites. Similar results were obtained by Belbachir and coworkers [24].

3.3.2. Effect of time on the PEGDM yield

Fig. 10 shows the yield of the macromonomers versus time for the PEGDM synthesis using \(\text{Mag-H}^+ \) as the catalyst. At 298 K after 5 h the reaction takes place quickly, reaching the best yields (98 %) in the presence of 10 wt % of \(\text{Mag-H}^+ \). After this time, the reaction slows down gradually, and the yield becomes almost constant. This behavior is explained by the nature of the reaction proceeded in the solution.

3.3.3. Effect of methacrylic anhydride on the PEGDM yield

Different contents of methacrylic anhydride were used to produce PEGDM. The effect of these contents on the methacrylation reaction was studied. Selective results are shown in Fig. 11. As could be seen, when the concentration of methacrylic anhydride is increased, the yield of the obtained macromonomer increases. The synthesis with 10 wt % of methacrylic anhydride gave the highest yield (up to 98 %).
4. Conclusions

In the present work we have developed a new method to synthesize PEGDM macromonomers. These materials were prepared using an Algerian clay (Maghnite-H) that could be used as green and eco-friendly catalyst. The synthesis of PEGDM macromonomers over Maghnite-H provides excellent results, in the presence of methacrylic anhydride, at room temperature and in one step. The influencing factors on the synthesis reaction were studied, and the optimal reaction conditions were obtained: the yield achieved its maximum (98%) with 10 wt% of the catalyst and 10 wt% of methacrylic anhydride at room temperature for 5 h, according to the increase in acidic active centers. The resulting products were perfectly characterized by FTIR, 1H NMR, 13C NMR, TGA, and UV-Vis analyses. Maghnite-H is an efficient, cheap and environmentally friendly catalyst. Its use for the synthesis of PEGDMs macromonomers leads to good results.

References

Received: December 12, 2018 / Revised: January 26, 2019 / Accepted: May 28, 2019

НОВИЙ ЕКОЛОГІЧНИЙ КАТАЛАЗATOR ДЛЯ СИНТЕЗУ БІС-МАКРОМОНОМЕРІВ ПОЛІГІЛІНІЛІКЛОЛОУ (ПЕГ)

Ключові слова: PEGDM, одиноступеневий синтез, Maghnite-H, макропористий анілід.