Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Modeling of Pt-catalyst surface influence on characteristics of oxygen and carbon monoxide molecules

Kostrobij P., Beznosiuk A., Dmytruk V., Polovyi V.
AttachmentSize
PDF icon 2016_3_1_043_050.pdf610.23 KB
Abstract: 
A simple mathematical model of Pt-catalyst surface influence on both carbon monoxide and oxygen molecules behavior is considered. It is shown that an electric field, which is located in a near-surface layer of the Pt-catalyst, leads to a significant change of both the dipole moment and the equilibrium interatomic distance.
References: 
  1. Kostrobij P. P., Tokarchuk M. V., Markovich B. M., Ignatjuk V. V., Gnativ B. V. Reakcijno-difuzijni procesy v sistemah “metal–gaz”. Lviv, Lviv Polytechnic National University (2009), (in Ukrainian).
  2. Richardson J. T. Principles of Catalyst Development, Springer Science+Business Media, LLC (1992).
  3. Rideal E. K. Concepts in Catalysis, Academic Press (1968).
  4. Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116, n. 11, 4379–4381 (2002).
  5. Zhang C., Hu P., Alavi A. A general mechanism for CO oxidation mechanism on close-packed transition metal surfaces. J. Am. Chem. Soc. 121, 7931–7932 (1999).
  6. Zhdanov V. P., Kasemo B. Simulation of CO adsorbtion and oxidation on Pt(110). J. Chem. Phys. 114, n. 12, 5351–5357 (2001).
  7. Reuter K., Frenkel D., Scheffer M. The steady-state of heterogeneous catalysis, studied by first-principles statistical mechanics. Preprint cond-mat. 0408080 v.l (2004).
  8. Mryglod I. M., Bzovska I. S. Effect of adsorbed impurities on catalytic oxidation of CO: a lattice-gas model. Ukr. J. Phys. 52, n. 5, 466–471 (2007).
  9. Ziff R. M., Gulari E., Barshad Y. Kinetic phase transitions in an irreversible surface reaction model. Phys. Rev. Letters. 56, n. 24, 2553–2556 (1986).
  10. Johanek V., Laurin M., Grant A. W., Kasemo B., Henry C. R., Libuda J. Fluctuations and bistabilities on catalyst nanoparticles. Science. 304, 1639–1644 (2004).
  11. Kostrobiy P. P., Markovych B. M., Suchorski Y. Revisiting local electric fields on a closed-packed metal surfaces: theory versus experiments. Solid state phenomena. 128, 219–224 (2007).
  12. Kostrobij P. P. Doctoral Thesis. Reaction-diffusion processes in systems with a “metal–gas” interface: the quantum statistical description. Lviv (2009), (in Ukrainian).
  13. Kostrobij P. P., Markovych B. M. Statistical theory of the spacebounded systems of charged fermi-particles: I. The functional integration method and effective potentials. Journ. of Phys. Stud. 7, 195–206 (2003) (in Ukrainian).
  14. Vakarchuk I. O. Kvantova mehanika. Lviv, Lviv National University (2004), (in Ukrainian).
  15. Kostrobij P. P., Markovych В. М. Investigation of the Influence of External Electric Field on the Electron Density of Semi-bounded Metal. Ukr. J. Phys. 52, n. 2, 167–171 (2007).
  16. Fudzinaga C. Metod molekuljarnih orbitalej. Moskva, Mir (1983), (in Russian).
  17. Kostrobij P. P., Markovych В. М. Statistical theory of the spacebounded systems of charged fermi-particles: II. Distribution functions. Journ. of Phys. Stud. 7, 298–312 (2003) (in Ukrainian).
  18. Granovsky Alex A. Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html.
Bibliography: 
Math. Model. Comput. Vol.3, No.1, pp.43-50 (2016)