Effective inter-electron interaction for metallic slab

Kostrobij P., Markovych B.
AttachmentSize
PDF icon 2016_3_1_051_058.pdf175.89 KB
Abstract: 
A system of electrons in a metal slab, which is described by the jellium model, is considered. The potential that forms a surface of the slab is modeled by the infinite square well potential. By using some approximations, the analytical expressions for effective inter-electron interaction inside the slab and outside it are obtained.
References: 
  1. Cohen M. L., Knight W. D. The Physics of Metal Clusters. Phys. Today. 43(12), 42–50 (1990).
  2. de Heer W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, n. 3, 611–676 (1993).
  3. Brack M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, n. 3, 677–732 (1993).
  4. Han Y., Liu D.-J. Quantum size effects in metal nanofilms: Comparison of an electron-gas model and density functional theory calculations. Phys. Rev. B. 80, 155404-1–155404-17 (2009).
  5. Kostrobii P. P., Markovych B. M. Statistical theory of the spacebounded systems of charged fermi-particles: I. The functional integration method and effective potentials. J. Phys. Stud. 7, 195–206 (2003).
  6. Kostrobii P. P., Markovych B. M. A statistical theory of the spacebounded systems of charged fermi-particles: II. Distribution functions. J. Phys. Stud. 7, 298–312 (2003).
  7. Kuryliak I. J., Kostroby P. P., Pizio A. A. Screened Potentials of Electron Interaction in Space-Bounded Systems. Preprint ITF-87-7P (1987), (in Russian).
  8. Ilchenko L. G., Pashickij Ye. A., Romanov Yu. A. Elektrostaticheskij potencial zarjadov v sloistyh sistemah s prostranstvennoj dispersiej. Fiz. tv. tela. 22(9), 2700–2710 (1980), (in Russian).
  9. Vojtenko A. I., Gabovich A. M., Rozenbaum V. M. Dinamicheskaya polyarizaciya metalla pri polevoj emisii. Preprint In-t fiziki n. 17 (1984), (in Russian).
  10. Usenko A. S. Prostranstvennye korrelyacii zaryazhennyh chastic v plazmennom sloe. Ukr. fiz. zhurn. 28(6), 839–847 (1983), (in Russian).
  11. Kostrobij P. P., Markovych B. M. A new approach to calculate the thermodynamic potential of an inhomogeneous electron gas. Condens. Matter Phys. 6, n. 2(34), 347–362 (2003).
  12. Kostrobij P. P., Markovych B. M. An effective potential of electron–electron interaction in semi–infinite jellium. Condens. Matter Phys. 9, n. 4(48), 747–756 (2006).
Bibliography: 
Math. Model. Comput. Vol.3, No.1, pp.51-58 (2016)